PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Automatic Crack Detection Using Weakly Supervised Semantic Segmentation Network and Mixed-Label Training Strategy

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Automatic crack detection in construction facilities is a challenging yet crucial task. However, existing deep learning (DL)-based semantic segmentation methods for this field are based on fully supervised learning models and pixel-level manual annotation, which are time-consuming and labor-intensive. To solve this problem, this paper proposes a novel crack semantic segmentation network using weakly supervised approach and mixed-label training strategy. Firstly, an image patch-level classifier of crack is trained to generate a coarse localization map for automatic pseudo-labeling of cracks combined with a thresholding-based method. Then, we integrated the pseudo-annotated with manual-annotated samples with a ratio of 4:1 to train the crack segmentation network with a mixed-label training strategy, in which the manual labels were assigned with a higher weight value. The experimental data on two public datasets demonstrate that our proposed method achieves a comparable accuracy with the fully supervised methods, reducing over 65% of the manual annotation workload.
Rocznik
Strony
95--118
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • School of Cyber Science and Engineering Zhengzhou University, Zhengzhou, China
autor
  • School of Cyber Science and Engineering Zhengzhou University, Zhengzhou, China
autor
  • Hanwei Electronics Group Corporation, Zhengzhou, China
autor
  • Hanwei Electronics Group Corporation, Zhengzhou, China
Bibliografia
  • [1] Krizhevsky A., Sutskever I., Hinton G. E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25.
  • [2] Kim B., Cho S. Image-based concrete crack assessment using mask and region-based convolutional neural network Structural Control and Health Monitoring, 26, 8, 2019, e2381.
  • [3] Koch C., Georgieva K., Kasireddy V., et al. A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure Advanced Engineering Informatics, 29, 2, 2015, 196-210.
  • [4] Cheng H., Li Y., Li H., et al. Embankment crack detection in UAV images based on efficient channel attention U2Net Structures, 50, 2023, 430-443.
  • [5] Chen Z., Wang T., Wu X, et al. Class re-activation maps for weakly-supervised semantic segmentation IEEE Transactions on Intelligent Transportation Systems Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, 969-978.
  • [6] Chang Y. T., Wang Q., Hung W. C., et al. Weakly-supervised semantic segmentation via sub-category exploration Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, 8991-9000.
  • [7] Tomasi C., Manduchi R. Bilateral filtering for gray and color images Sixth international conference on computer vision, 1998: 839-846.
  • [8] Pathak D., Krahenbuhl P., Darrell T. Constrained convolutional neural networks for weakly supervised segmentation Proceedings of the IEEE international conference on computer vision, 2015, 1796-1804.
  • [9] Dong Z., Wang J., Cui B., et al. Patch-based weakly supervised semantic segmentation network for crack detection Construction and Building Materialsg, 258, 2020, 120291.
  • 10] Fan Z, Wu Y, Lu J, et al. Automatic pavement crack detection based on structured prediction with the convolutional neural network arXiv preprint arXiv, 2018, 1802.02208.
  • [11] Fan R., Bocus M. J., Zhu Y., et al. Road crack detection using deep convolutional neural network and adaptive thresholding 2019 IEEE Intelligent Vehicles Symposium (IV), 2019, 474-479.
  • [12] Gong Q., Zhu L., Wang Y., et al. Automatic subway tunnel crack detection system based on line scan camera Structural Control and Health Monitoring, 28, 8, 2021, e2776.
  • [13] Oliveira H., Correia P. L. Automatic road crack segmentation using entropy and image dynamic thresholding 2009 17th European Signal Processing Conference, 2009, 622-626.
  • [14] Božič J., Tabernik D., Skočaj D. Mixed supervision for surface-defect detection: From weakly to fully supervised learning Computers in Industry, 129, 2021, 103459.
  • [15] König J., Jenkins M. D., Mannion M., et al. Weakly-supervised surface crack segmentation by generating pseudo-labels using localization with a classifier and thresholding IEEE Transactions on Intelligent Transportation Systems, 23, 12, 2022, 24083-24094.
  • [16] Ahn J., Kwak S. Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, 4981-4990.
  • [17] Jiang W., Liu M., Peng Y., et al. HDCB-Net: A neural network with the hybrid dilated convolution for pixel-level crack detection on concrete bridges IEEE Transactions on Industrial Informatics, 17, 8, 2020, 5485-5494.
  • [18] Liu Y., Yao J., Lu X., et al. DeepCrack: A deep hierarchical feature learning architecture for crack segmentation Neurocomputing, 338, 2019, 139-153.
  • [19] Li Q., Zou Q., Zhang D., et al. FoSA: F* seed-growing approach for crack-line detection from pavement images Image and Vision Computing, 29, 12, 2011, 861-872.
  • [20] Iraniparast M., Ranjbar S., Rahai M., et al. Surface concrete cracks detection and segmentation using transfer learning and multi-resolution image processing Structures, 54, 2023, 386-398.
  • [21] Liu H., Miao X., Mertz C., et al. Crackformer: Transformer network for finegrained crack detection Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 3783-3792. [22] Abdel-Qader I., Abudayyeh O., Kelly M. E. Analysis of edge-detection techniques for crack identification in bridges Journal of Computing in Civil Engineering, 17, 4, 2003, 255-263.
  • [23] Nie M., Wang C. Pavement Crack Detection based on yolo v3 2019 2nd international conference on safety produce informatization (IICSPI), 2019: 327-330.
  • [24] Nigam R., Singh S. K. Crack detection in a beam using wavelet transform and photographic measurements Structures, 25, 2020, 436-447.
  • [25] Otsu N. A threshold selection method from gray-level histograms IEEE transactions on systems , man, and cybernetics, 9, 1, 1979, 62-66.
  • [26] Ronneberger O., Fischer P., Brox T. U-net: Convolutional networks for biomedical image segmentation Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015, 2015, 234-241.
  • [27] Woo S., Park J., Lee J. Y., et al. Cbam: Convolutional block attention module Proceedings of the European conference on computer vision (ECCV), 2018, 3-19.
  • [28] Durand T., Mordan T., Thome N., et al. Wildcat: Weakly supervised learning of deep convnets for image classification, pointwise localization and segmentation Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, 642-651.
  • [29] Wang K. C. P., Li Q., Gong W. Wavelet-based pavement distress image edge detection with a trous algorithm Transportation Research Record, 2024, 1, 2007, 73-81.
  • [30] Wang H., Li Y., Dang L. M., et al. Pixel-level tunnel crack segmentation using a weakly supervised annotation approach [J]. Computers in Industry, 2021, 133: 103545.
  • [31] Wang M., Cheng J. C. P. A unified convolutional neural network integrated with conditional random field for pipe defect segmentation Computer-Aided Civil and Infrastructure Engineering, 35, 2, 2020, 162-177.
  • [32] Yang F., Zhang L., Yu S., et al. Feature pyramid and hierarchical boosting network for pavement crack detection IEEE Transactions on Intelligent Transportation Systems, 21, 4, 2019, 1525-1535.
  • [33] Zou Q., Zhang Z., Li Q., et al. Deepcrack: Learning hierarchical convolutional features for crack detection IEEE transactions on image processing, 28, 3, 2018, 1498-1512.
  • [34] Zhao H., Qin G., Wang X. Improvement of canny algorithm based on pavement edge detection 2010 3rd international congress on image and signal processing, 2, 2010, 964-967.
  • 35] Zheng S., Jayasumana S., Romera-Paredes B., et al. Conditional random fields as recurrent neural networks Proceedings of the IEEE international conference on computer vision, 2015, 1529-1537.
  • [36] Zhou B., Khosla A., Lapedriza A., et al. Learning deep features for discriminative localization Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, 2921-2929.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57b27f6d-0a44-488a-bc2c-d1c3570dec45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.