PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tissue coefficient as a novel index in bioelectric impedance analysis researches and applications

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: Bioimpedance is of great importance in both basic and clinical researches. Though several parameters have been used in detection and analyzing the condition of the tissues and human body epidemically and clinically, we hypothesize that the ratio of resistive and capacitive components of tissues could be discriminative in bioelectric impedance analysis (BIA) related researches. Materials and methods: In this article, we introduced a newly coined parameter, tissue coefficient, to the open data from an online database. Results: The 54 kinds of tissues can be classified into 4 categories: (1) liquid, (2) nail, (3) stomach & muscle, (4) fat & brain. The related time coefficient is especially useful to characterize the liquid-like tissues. Conclusion: The results suggest that the tissue coefficient is promising in distinguishing different tissues, and other BIA-related (bioelectric impedance analysis) scenarios.
Twórcy
autor
  • Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, Tianjin, China
autor
  • Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, Tianjin, China
autor
  • Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, Tianjin, China
autor
  • Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, Tianjin, China
autor
  • Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, Tianjin, China
autor
  • Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, No. 236, Baidi Road, Nankai District, Tianjin, 300192, China
autor
  • Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, No. 236, Baidi Road, Nankai District, Tianjin, 300192, China
Bibliografia
  • [1] Mannoor MS, James T, Ivanov DV, Beadling L, Braunlin W. Nanogap dielectric spectroscopy for aptamer-based protein detection. Biophys J 2010;98(4):724–32.
  • [2] Mereu E, Succa V, Buffa R, Sanna C, Mereu RM, Catte O, et al. Total body and arm bioimpedance in patients with Alzheimer's disease. Exp Gerontol 2018;102:145–8.
  • [3] Maioli M, Toso A, Leoncini M, Musilli N, Grippo G, Ronco C, et al. Bioimpedance-guided hydration for the prevention of contrast-induced kidney injury: the HYDRA study. J Am Coll Cardiol 2018;71(25):2880–9.
  • [4] Li D, Pu Z, Liang W, Liu T, Wang R, Yu H, et al. Non-invasive measurement of normal skin impedance for determining the volume of the transdermally extracted interstitial fluid. Measurement 2015;62:215–21.
  • [5] Parviz M, Toshniwal P, Viola HM, Hool LC, Fear PMW, Wood FM, et al. Real-time bioimpedance sensing of antifibrotic drug action in primary human cells. ACS sensors 2017;2 (10):1482–90.
  • [6] Nishikawa H, Enomoto H, Iwata Y, Nishimura T, Iijima H, Nishiguchi S. Clinical utility of bioimpedance analysis in liver cirrhosis. J Hepato Biliary Pancreatic Sci 2017;24(7):409–16.
  • [7] Mulasi U, Kuchnia AJ, Cole AJ, Earthman CP. Bioimpedance at the bedside. Nutr Clin Pract 2015;30(2):180–93.
  • [8] Esco MR, Snarr RL, Leatherwood MD, Chamberlain NA, Redding ML, Flatt AA, et al. Comparison of total and segmental body composition using DXA and multifrequency bioimpedance in collegiate female athletes. J Strength Cond Res 2015;29(4):918–25.
  • [9] Peppa M, Stefanaki C, Papaefstathiou A, Boschiero D, Dimitriadis G, Chrousos GP. Bioimpedance analysis vs. DEXA as a screening tool for osteosarcopenia in lean, overweight and obese Caucasian postmenopausal females. Hormones 2017;16(2):181–93.
  • [10] Ellegård L, Aldenbratt A, Svensson MK, Lindberg C. Body composition in patients with primary neuromuscular disease assessed by dual energy X-ray absorptiometry (DXA) and three different bioimpedance devices. Clin Nutr ESPEN 2019;29:142–8.
  • [11] Cranfield CG, Cornell BA, Grage SL, Duckworth P, Carne S, Ulrich AS, et al. Transient potential gradients and impedance measures of tethered bilayer lipid membranes: pore-forming peptide insertion and the effect of electroporation. Biophys J 2014;106(1):182–9.
  • [12] Teixeira VS, Kalckhoff J-P, Krautschneider W, Schroeder D. Bioimpedance analysis of L929 and HaCaT cells in low frequency range. Curr Direct Biomed Eng 2018;4(1):115–8.
  • [13] Shi F, Steuer A, Zhuang J, Kolb JF. Bioimpedance analysis of epithelial monolayers after exposure to nanosecond pulsed electric fields. IEEE Trans Biomed Eng 2018;66(7):2010–21.
  • [14] Halter RJ, Hartov A, Poplack SP, diFlorio-Alexander R, Wells WA, Rosenkranz KM, et al. Real-time electrical impedance variations in women with and without breast cancer. IEEE Trans Med Imaging 2015;34(1):38–48.
  • [15] Braun RP, Mangana J, Goldinger S, French L, Dummer R, Marghoob AA. Electrical impedance spectroscopy in skin cancer diagnosis. Dermatol Clin 2017;35(4):489–93.
  • [16] Emran S, Hurskainen M, Tomppo L, Lappalainen R, Kullaa AM, Myllymaa S. Bioimpedance spectroscopy and spectral camera techniques in detection of oral mucosal diseases: a narrative review of the state-of-the-art. J Med Eng Technol 2019;43(8):474–91.
  • [17] Groeber F, Engelhardt L, Egger S, Werthmann H, Monaghan M, Walles H, et al. Impedance spectroscopy for the non-destructive evaluation of in vitro epidermal models. Pharm Res 2015;32(5):1845–54.
  • [18] Constantin M-M, Poenaru E, Poenaru C, Constantin T. Skin hydration assessment through modern non-invasive bioengineering technologies. Maedica 2014;9(1):33.
  • [19] Asklöf M, Kjølhede P, Wodlin NB, Nilsson L. Bioelectrical impedance analysis; a new method to evaluate lymphoedema, fluid status, and tissue damage after gynaecological surgery—a systematic review. Eur J Obstet Gynecol Reprod Biol 2018;228:111–9.
  • [20] Dasgupta I, Keane D, Lindley E, Shaheen I, Tyerman K, Schaefer F, et al. Validating the use of bioimpedance spectroscopy for assessment of fluid status in children. Pediatr Nephrol 2018;33(9):1601–7.
  • [21] Shah C, Vicini FA, Arthur D. Bioimpedance spectroscopy for breast cancer related lymphedema assessment: clinical practice guidelines. Breast J 2016;22(6):645–50.
  • [22] Tangvoraphonkchai K, Davenport A. Changes in body composition following haemodialysis as assessed by bioimpedance spectroscopy. Eur J Clin Nutr 2017;71(2):169.
  • [23] Whitworth PW, Cooper A. Reducing chronic breast cancer-related lymphedema utilizing a program of prospective surveillance with bioimpedance spectroscopy. Breast J 2018;24(1):62–5.
  • [24] Tabinor M, Elphick E, Dudson M, Kwok CS, Lambie M, Davies SJ. Bioimpedance-defined overhydration predicts survival in end stage kidney failure (ESKF): systematic review and subgroup meta-analysis. Sci Rep 2018;8(1):4441.
  • [25] Gómez-Ambrosi J, González-Crespo I, Catalán V, Rodríguez A, Moncada R, Valentí V, et al. Clinical usefulness of abdominal bioimpedance (ViScan) in the determination of visceral fat and its application in the diagnosis and management of obesity and its comorbidities. Clin Nutr 2018;37(2):580–9.
  • [26] Park KS, Lee D-H, Lee J, Kim YJ, Jung KY, Kim KM, et al. Comparison between two methods of bioelectrical impedance analyses for accuracy in measuring abdominal visceral fat area. J Diabetes Complications 2016;30(2):343–9.
  • [27] Corley A, Caruana LR, Barnett AG, Tronstad O, Fraser JF. Oxygen delivery through high-flow nasal cannulae increase end- expiratory lung volume and reduce respiratory rate in post-cardiac surgical patients. Br J Anaesth 2011;107(6):998–1004.
  • [28] Vardavas CI, Anagnostopoulos N, Kougias M, Evangelopoulou V, Connolly GN, Behrakis PK. Short-term pulmonary effects of using an electronic cigarette: impact on respiratory flow resistance, impedance, and exhaled nitric oxide. Chest 2012;141(6):1400–6.
  • [29] Ullah W, Hunter RJ, Baker V, Dhinoja MB, Sporton S, Earley MJ, et al. Target indices for clinical ablation in atrial fibrillation: insights from contact force, electrogram, and biophysical parameter analysis. Circ Arrhythm Electrophysiol 2014;7(1):63–8.
  • [30] Massari F, Scicchitano P, Ciccone MM, Caldarola P, Aspromonte N, Iacoviello M, et al. Bioimpedance vector analysis predicts hospital length of stay in acute heart failure. Nutrition 2019;61:56–60.
  • [31] Chabin X, Taghli-Lamallem O, Mulliez A, Bordachar P, Jean F, Futier E, et al. Bioimpedance analysis is safe in patients with implanted cardiac electronic devices. Clin Nutr 2019;38 (2):806–11.
  • [32] Mitchell HH. Comparative nutrition of man and domestic animals. NY: Academic Press; 1962.
  • [33] Bonanos N, Steele B, Butler E, Macdonald JR, Johnson WB, Worrell WL, et al. Applications of impedance spectroscopy. Impedance spectroscopy: theory, experiment, and applications. Hoboken, NJ: John Wiley & Sons; 2018. p. 175–478.
  • [34] Ellegård L, Petersen P, Öhrn L, Bosaeus I. Longitudinal changes in phase angle by bioimpedance in intensive care patients differ between survivors and non-survivors. Clin Nutr ESPEN 2018;24:170–2.
  • [35] Mullie LA, O'Brand A, Bendayan M, Moss E, Morin J-F, Langlois Y, et al. Bioimpedance phase angle as a biomarker for frailty and predictor of mortality in cardiac surgery. J Am Coll Cardiol 2018;71(11):1356.
  • [36] Portugal MRC, Brito FB, Curioni CC, Bezerra FF, Faerstein E, Koury JC. Smoking status affects bioimpedance-derived phase angle in men but not in women: The Pró-Saúde Study, Brazil. Nutrition 2019;61:70–6.
  • [37] Park JH, Jo Y-I, Lee J-H. Clinical usefulness of bioimpedance analysis for assessing volume status in patients receiving maintenance dialysis. Korean J Intern Med 2018;33(4):660–9.
  • [38] Nwosu AC, Mayland CR, Mason S, Cox TF, Varro A, Stanley S, et al. Bioelectrical impedance vector analysis (BIVA) as a method to compare body composition differences according to cancer stage and type. Clin Nutr ESPEN 2019;30:59–77.
  • [39] Bosy-Westphal A, Danielzik S, Dörhöfer R-P, Piccoli A, Müller MJ. Patterns of bioelectrical impedance vector distribution by body mass index and age: implications for body-composition analysis. Am J Clin Nutr 2005;82(1):60–8.
  • [40] de-Mateo-Silleras B, de-la-Cruz-Marcos S, Alonso-Izquierdo L, Camina-Martín MA, Marugán-de-Miguelsanz JM, Redondo-del-Río MP. Bioelectrical impedance vector analysis in obese and overweight children. PLoS One 2019;14(1).
  • [41] Park CS, Lee S-E, Cho H-J, Kim Y-J, Kang H-J, Oh B-H, et al. Body fluid status assessment by bio-impedance analysis in patients presenting to the emergency department with dyspnea. Korean J Intern Med 2018;33(5):911.
  • [42] de-Mateo-Silleras B, Camina-Martín MA, de-Frutos-Allas JM, de-la-Cruz-Marcos S, Carreño-Enciso L, Redondo-del- Río MP. Bioimpedance analysis as an indicator of muscle mass and strength in a group of elderly subjects. Exp Gerontol 2018;113:113–9.
  • [43] Dopsaj M, Markovic´ M, Kasum G, Jovanovic´ S, Koropanovski N, Vukovic´ M, et al. Discrimination of different body structure indexes of elite athletes in combat sports measured by multi frequency bioimpedance method. Int J Morphol 2017;35(1):199–207.
  • [44] Giorgi A, Vicini M, Pollastri L, Lombardi E, Orsini M, Bonifazi M, et al. Qualitative body composition of cyclists: bioimpedance vector analysis discriminates different categories of cyclists. J Sci Cycl 2016;5(2).
  • [45] Kataoka H. Novel monitoring method for the management of heart failure: combined measurement of body weight and bioimpedance index of body fat percentage. Future Cardiol 2009;5(6):541–6.
  • [46] Marra M, Sammarco R, De Lorenzo A, Iellamo F, Siervo M, Pietrobelli A, et al. Assessment of body composition in health and disease using bioelectrical impedance analysis (BIA) and dual energy X-ray absorptiometry (DXA): a critical overview. Contrast Media Mol Imaging 2019;2019.
  • [47] Mazess RB, Barden HS, Bisek JP, Hanson J. Dual-energy x-ray absorptiometry for total-body and regional bone-mineral and soft-tissue composition. Am J Clin Nutr 1990;51 (6):1106–12.
  • [48] Aubertin G, Sayeh A, Dillenseger J-P, Ayme-Dietrich E, Choquet P, Niederhoffer N. Comparison of bioimpedance spectroscopy and X-ray micro-computed tomography for total fat volume measurement in mice. PLoS One 2017;12(8): e0183523.
  • [49] Nicander I, Rozell BL, Rundquist L, Ollmar S. Electrical impedance. A method to evaluate subtle changes of the human oral mucosa. Eur J Oral Sci 1997;105(6):576–82.
  • [50] Andreuccetti D. An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz–100 GHz;Based on data published by C. Gabriel et al. in 1996. Available from http://niremfifaccnrit/tissprop/ [Last accessed 21 July 2019] 2012.
  • [51] Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 1996;41 (11):2231–49.
  • [52] Li Y, Ma R, Wang X, Jin J, Wang H, Liu Z, et al. Tissue coefficient of bioimpedance spectrometry as an index to discriminate different tissues in vivo. Biocybern Biomed Eng 2019;39:1–14.
  • [53] Schwan HP. Electrical properties of tissue and cell suspensions. Advances in biological and medical physics, vol. 5. New York, NY: Academic Press; 1957. p. 147–209.
  • [54] Alexander C, Sadiku M. Fundamentals of electric circuits. New York, NY: McGraw-Hill Education; 2012.
  • [55] Miklavcic D, Pavšelj N, FX Hart. Electric properties of tissues. Wiley encyclopedia of biomedical engineering. Hoboken. New Jersey: John Wiley & Sons, Inc.; 2006. p. 1–12.
  • [56] Yamamoto T, Yamamoto Y. Electrical properties of the epidermal stratum corneum. Med Biol Eng 1976;14(2):151–8.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57b1105b-420e-4f11-ab3d-7c465b42301f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.