PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of optimal probe measurement time on a machine tool using machine learning methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper explores the application of various machine learning techniques to model the optimal measurement time required after machining with a probe on CNC machine tools. Specifically, the research employs four different machine learning models: Elastic Net, Neural Networks, Decision Trees, and Support Vector Machines, each chosen for their unique strengths in addressing different aspects of predictive modeling in an industrial context. The study examines the input parameters such as material type, post-processing wall thickness, cutting depth, and rotational speed over measurement time. This approach ensures that the models account for the variables that significantly affect CNC machine operations. Regression value, mean square error, root mean square error, mean absolute percentage error, and mean absolute error were used to evaluate the quality of the obtained models. As a result of the analyses, the best modeling results were obtained using neural networks. Their ability to accurately predict measurement times can significantly increase operational efficiency by optimizing schedules and reducing downtime in machining processes.
Rocznik
Strony
43--59
Opis fizyczny
Bibliogr. 25 poz., fig., tab.
Twórcy
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Production Engineering Fundamentals, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Production Engineering Fundamentals, Poland
  • Lublin University of Technology, Management Faculty, Department of Enterprise Organisation, Poland
  • Lublin University of Technology, Management Faculty, Department of Quantitative Methods, Poland
  • Lublin University of Technology, Electrical Engineering and Computer Science Faculty, Department of Computer Science, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Production Engineering Fundamentals, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Production Engineering Fundamentals, Poland
autor
  • Lublin University of Technology, Doctoral School at the Lublin University of Technology, Poland
Bibliografia
  • [1] Arachchige, A., Sugathadasa, R., Herath, O. & Thibbotuwawa, A. (2021). Artificial neural network based demand forecasting integrated with federal funds rate. Applied Computer Science, 17(4), 34–44. https://doi.org/10.23743/ACS-2021-27
  • [2] Biruk-Urban, K., Zagórski, I., Kulisz, M. & Leleń, M. (2023). Analysis of vibration, deflection angle and surface roughness in water-jet cutting of AZ91D magnesium alloy and simulation of selected surface roughness parameters using ANN. Materials, 16(9), 3384. https://doi.org/10.3390/MA16093384
  • [3] Blecha, P., Holub, M., Marek, T., Jankovych, R., Misun, F., Smolik, J. & Machalka, M. (2022). Capability of measurement with a touch probe on CNC machine tools. Measurement, 195, 111153. https://doi.org/10.1016/J.MEASUREMENT.2022.111153
  • [4] Bobrov, V. F. (1975). Basics of metal cutting theory. Mechanical engineering.
  • [5] Fleischer, J., Pabst, R. & Kelemen, S. (2007). Heat flow simulation for dry machining of power train castings. CIRP Annals, 56(1), 117–122. https://doi.org/10.1016/J.CIRP.2007.05.030
  • [6] Guiassa, R. & Mayer, J. R. R. (2011). Predictive compliance based model for compensation in multi-pass milling by on-machine probing. CIRP Annals, 60(1), 391–394. https://doi.org/10.1016/J.CIRP.2011.03.123
  • [7] Jacniacka, E. & Semotiuk, L. (2011). Odkształcenia cieplne a niedokładność pomiaru sondą przedmiotową. Pomiary Automatyka Kontrola, 57(9), 985–988.
  • [8] Jacniacka, E., Semotiuk, L. & Pieśko, P. (2010). Niepewność pomiaru wewnątrzobrabiarkowego systemu pomiarowego z zastosowaniem sondy OMP 60. Przegląd Mechaniczny, 6, 36–42.
  • [9] Kamieńska-Krzowska, B., Semotiuk, L. & Czerw, M. (2007). Analiza możliwości zastosowania sondy przedmiotowej do kontroli czynnej na pionowym centrum obróbkowym FV 580A. Acta Mechanica et Automatica, 1(2), 19–24.
  • [10] Kizaki, T., Tsujimura, S., Marukawa, Y., Morimoto, S. & Kobayashi, H. (2021). Robust and accurate prediction of thermal error of machining centers under operations with cutting fluid supply. CIRP Annals, 70(1), 325–328. https://doi.org/10.1016/J.CIRP.2021.04.074
  • [11] Kulisz, M., Zagórski, I., Józwik, J. & Korpysa, J. (2022a). Research, modelling and prediction of the influence of technological parameters on the selected 3D roughness parameters, as well as temperature, shape and geometry of chips in milling AZ91D Alloy. Materials, 15(12), 4277. https://doi.org/10.3390/ma15124277
  • [12] Kulisz, M., Zagórski, I., Weremczuk, A., Rusinek, R. & Korpysa, J. (2022b). Analysis and prediction of the impact of technological parameters on cutting force components in rough milling of AZ31 magnesium alloy. Archives of Civil and Mechanical Engineering, 22, 1. https://doi.org/10.1007/s43452-021-00319-y
  • [13] Kulisz, M., Józwik, J., Barszcz, M., Pieśko, P., Zawada- Michałowska, M. & Leleń, M. (n.d.). Process analysis, optimization and modeling of time measuring of the workpiece using an inspection probe on a CNC machine tool. Metrology and Hallmark, Central Office of Measures. In press.
  • [14] Kulisz, M., Kujawska, J., Aubakirova, Z., Zhairbaeva, G. & Warowny, T. (2022c). Prediction of the compressive strength of environmentally friendly concrete using artificial neural network. Applied Computer Science, 18(4), 68–81. https://doi.org/10.35784/ACS-2022-29
  • [15] Kwon, Y., Jeong, M. K. & Omitaomu, O. A. (2006a). Adaptive support vector regression analysis of closed-loop inspection accuracy. International Journal of Machine Tools and Manufacture, 46(6), 603–610. https://doi.org/10.1016/J.IJMACHTOOLS.2005.07.011
  • [16] Kwon, Y., Tseng, T. L. & Ertekin, Y. (2006b). Characterization of closed-loop measurement accuracy in precision CNC milling. Robotics and Computer-Integrated Manufacturing, 22(4), 288–296. https://doi.org/10.1016/J.RCIM.2005.06.002
  • [17] Li, K.-M. & Liang, S. Y. (2006). Modeling of cutting temperature in near dry machining. Journal of Manufacturing Science and Engineering, 128(2), 416–424. https://doi.org/10.1115/1.2162907
  • [18] Moriwaki, T., Horiuchi, A. & Okuda, K. (1990). Effect of cutting heat on machining accuracy in ultra-precision diamond turning. CIRP Annals, 39(1), 81–84. https://doi.org/10.1016/S0007-8506(07)61007-5
  • [19] Olszak, W. (2008). Obróbka Skrawaniem. WNT.
  • [20] Pieśko, P., Zawada-Michałowska, M. & Józwik, J. (2023). Influence of thermal deformations on accuracy measurement with an inspection probe. 2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace) (pp. 280–284). IEEE. https://doi.org/10.1109/METROAEROSPACE57412.2023.10190043
  • [21] Putz, M., Schmidt, G., Semmler, U., Oppermann, C., Bräunig, M. & Karagüzel, U. (2016). Modeling of heat fluxes during machining and their effects on thermal deformation of the cutting tool. Procedia CIRP, 46, 611–614. https://doi.org/10.1016/J.PROCIR.2016.04.046
  • [22] Sałamacha, D. & Józwik, J. (2023). Evaluation of measurement uncertainty obtained with a tool probe on a CNC machine tool. MANUFACTURING TECHNOLOGY, 23(4), 513–524. https://doi.org/10.21062/mft.2023.051
  • [23] Shi, H., Xiao, Y., Mei, X., Tao, T. & Wang, H. (2023). Thermal error modeling of machine tool based on dimensional error of machined parts in automatic production line. ISA Transactions, 135, 575–584. https://doi.org/10.1016/J.ISATRA.2022.09.043
  • [24] Wang, S., To, S., Chan, C. Y., Cheung, C. F. & Lee, W. B. (2010). A study of the cutting-induced heating effect on the machined surface in ultra-precision raster milling of 6061 Al alloy. International Journal of Advanced Manufacturing Technology, 51, 69–78. https://doi.org/10.1007/s00170-010-2613-7
  • [25] Weck, M., McKeown, P., Bonse, R. & Herbst, U. (1995). Reduction and compensation of thermal errors in machine tools. CIRP Annals, 44(2), 589–598. https://doi.org/10.1016/S0007-8506(07)60506-X
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57a81c65-63ca-4a1d-9926-3e7f07bee885
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.