TECHNIKI ZATĘŻENIA I POMIARU AKTYWNOŚCI RADIONUKLIDÓW KRYPTONU I KSENONU

ARTYKUŁY

Paweł Janowski

VV stęp

Radioizotopy kryptonu i ksenonu o krótkich czasach połowicznego zaniku, niewystępujące naturalnie w przyrodzie, są uwalniane do środowiska przede wszystkim podczas normalnej pracy elektrowni jądrowych oraz po wybuchu jądrowym. Ich źródłami są również zakłady przerobu wypalonego paliwa jądrowego oraz zakłady wytwarzające radiofarmaceutyki[5] (np. ¹³³Xe, czy ^{81m}Kr stosowane w badaniach płuc). Gazy te, jako szlachetne i bierne chemicznie bywają emitowane do atmosfery nawet w przypadkach podziemnych eksplozji jądrowych, podczas których pozostałe substancje promieniotwórcze nie muszą być uwalniane ponad powierzchnię gruntu, a już kilkumetrowa warstwa ziemi wystarcza, by promieniowanie to nie wydostało się na powierzchnię.

W związku z tym monitorowanie obecności krótkożyjących radioizotopów ksenonu w powietrzu stanowi dobry system wykrywania nielegalnej działalności jądrowej (tj. przeprowadzanie próbnych eksplozji bomb atomowych) wbrew przyjętemu traktatowi o całkowitym zakazie prób z bronią jądrową (ang. *Comprehensive Nuclear-Test-Ban Treaty, CTBT*). Dlatego też Organizacja CTBTO powołała nieformalną grupę ekspertów w ramach *International Noble Gas Experiment*, mającą na celu opracować, zbudować i przetestować systemy poboru i detekcji promieniotwórczych izotopów ksenonu (Tabela 1). Wszystkie cztery wysunięte propozycje systemów spełniły wymagania im stawiane i zostały zaakceptowane dla komercyjnej produkcji[8]. W tym opracowaniu budowa i działanie trzech z nich zostały opisane w dostępnych pracach naukowych.

W części systemu IMS (*International Monitoring System*) monitorującej działalność jądrową na świecie przez stacje poboru gazów szlachetnych z racji długiego czasu półzaniku izotopu ⁸⁵Kr, **krypton** został pominięty. Dzięki niemu istniejące już antropogenne tło (stężenie aktywności rzędu 1 Bq/m³) uniemożliwia wykrywanie subtelnych różnic jego koncentracji, zaś pozostałe izotopy są zbyt krótkożyciowe (czas półrozpadu poniżej 5 h), żeby mogły być ilościowo wykorzystane w pomiarze w dużych odległościach od miejsca uwolnienia.

Nuklid	⁸⁵ Kr	^{131m} Xe	¹³³ Xe	^{133m} Xe	¹³⁵ Xe
T _{1/2}	10,7 y	11,9 d	5,24 d	2,19 d	9,1 h
Х	13 keV	→ 30,4 keV (54%)	31,6 keV (48,9%)	→ 30,4 keV (56,3)	31,6 keV (5,2%)
γ	514 keV (0,43%)	164 keV (2%)	→ 81 keV (37%)	233 keV (10%)	250 keV (90%)
β	687 keV (99,57%)	-	→ 346 keV (100%)	-	910 keV (100%)
IC	-	→ 129 keV (61%)	45 keV (54%)	→ 199 keV (63%)	214 keV (5,7%)

Tabela 1. Własności wybranych radionuklidów Kr i Xe

Oznaczenia w tabeli: T_{1/2} – okres połowicznego zaniku;

X – energie oraz (wydajności) emitowanych kwantów promieniowania rentgenowskiego;

γ – energie oraz (wydajności) emitowanych kwantów promieniowania gamma;

 β – energie oraz (wydajności) emitowanych elektronów z przemiany beta;

IC – energie oraz (wydajności) emitowanych elektronów konwersji wewnętrznej;

Strzałkami oznaczono koincydencje emitowanego promieniowania.

10

W dalszej części tego opracowania opisane zostaną (dostępne w literaturze) pojedyncze metody wyznaczania koncentracji kryptonu-85 w powietrzu atmosferycznym.

1. System SAUNA [1]

System SAUNA (*Swedish Automatic Unit for Noble gas Acquisition*) został opracowany, aby zastąpić poprzednio używany w Szwecji system, niespełniający wymogów stawianych przez Międzynarodowy System Monitoringu IMS dla CTBT.

Zasadniczo można wyróżnić trzy części systemu SAU-NA: próbkującą, procesującą i detekcyjną.

SAUNA – próbkowanie

Pierwsza z nich, część próbkująca składa się z dwóch bliźniaczych torów (rys. 1), z których w danej chwili przez jeden z nich przepompowywane jest powietrze, a drugi jest regenerowany osuszonym powietrzem z wyjścia pierwszego toru (wyjaśnienie w tekście niżej).

Rys. 1. Schemat sekcji próbkowania systemu SAUNA, na podstawie [1]

Pompa (**P**) kompresuje powietrze do nadciśnienia 2,4 atm, zapewniając stały strumień przepływu 9 dm³/min. Wymiennik ciepła (**W**) oziębia skompresowane powietrze do temperatury otoczenia. Manometr (**M**) pozwala kontrolować ciśnienie pompowanego powietrza. Dalsze oziębianie do -5°C w celu usunięcia części pary wodnej z próby powietrza odbywa się na złączu termoelektrycznym (**TE**). Następnie powietrze przechodzi przez dwie szeregowo połączone kolumny z sitem molekularnym 4A (**SM**) w celu usunięcia resztek pary wodnej oraz dwutlenku węgla. Kolumny z sitem wykonane są z rury ze stali nierdzewnej o średnicy wewnętrznej 38 mm i długości 137 cm, w celu zapewnienia redukcji zajmowanej przestrzeni są zgięte w kształt litery U.

Dalej powietrze przetłaczane jest do kolejnych kolumn (WA1) o tych samych wymiarach co poprzednie, lecz wypełnionych węglem aktywnym w celu absorpcji ksenonu. Węgiel ten, uzyskany ze skorup orzechów kokosowych (USS 8x16) o rozmiarach ziaren w przedziale (1,2-2,4) mm przed umieszczeniem w kolumnach jest płukany we wrzącej dejonizowanej wodzie i suszony w temperaturze 80°C przez 12 h. Jak wykazały testy tego systemu, zatkanie ksenonem kolumn z węglem aktywnym następuje po przepuszczeniu ok. 4 m³ powietrza.

Wypływające z kolumn z węglem aktywnym osuszone powietrze (praktycznie azot) używany jest do regeneracji drugiej części sekcji próbkującej (strumień wsteczny względem trybu próbkowania). Regenerację wspomaga ogrzewanie kolumn z węglem.

SAUNA – przetwarzanie

Druga część systemu, procesująca, służy połączeniu próbek ksenonu z obu torów A i B oraz pomiarowi jego ilości na chromatografie gazowym.

Trwające 6 h próbkowanie jednym torem (A) kończy się skierowaniem strumienia włotowego powietrza na drugi tor (B) i w torze A rozpoczyna się przetłaczanie próbki ksenonu do części procesującej. Pompa próżniowa (**PP**) (rys. 2) wymusza podciśnienie ok. 0,2 atm, po czym kolumny z węglem aktywnym zawierające ksenon są ogrzewane do temperatury przeszło 300°C i tłoczony jest w nie gaz nośny – hel. Ksenon adsorbuje się na węglu aktywnym (**WA2**) w sekcji procesującej (rys. 2), pozostawiając ewentualne resztki pary wodnej i dwutlenku węgla na sicie molekularnym (**SM**). Obie kolumny znajdują się w piecyku (**Ov1**) umożliwiającym ich podgrzewanie.

Rys. 2. Jednostka procesująca systemu SAUNA, [1]

Po następnych 6 h próbkowania w drugim torze (B) powtarzana jest ta sama procedura dla jego kolumny

z węglem aktywnym i zaadsorbowanym ksenonem, przez co w części procesującej, na węglu (**WA2**) następuje dodanie próbek ksenonu z obu próbek powietrza o objętości 3,5 m³ każda.

Połączenie próbek następuje podczas wygrzewania węgla w kolumnie (**WA2**) i kierowania gazu nośnego z ksenonem na kolumny z sitami molekularnymi 3A i 5A (**MS 3A**) i (**MS 5A**), tu odbywa się dalsze oczyszczanie próbki, między innymi z radonu.

Ostatnim stopniem części procesującej jest chromatograf gazowy (GC, Chrompack 9001), na którym następuje ostateczna separacja od pozostałych gazów oraz określenie ilości wyekstrahowanego z powietrza ksenonu. Pik ksenonowy (obecny na chromatogramie sygnał wykazujący ilościowo obecność ksenonu), wyprzedza przy tym pik radonowy o ok. 30 min co stwierdzono podczas oddzielnych testów. Pomiar objętości wykonywany jest przy pomocy miernika przewodności cieplnej. Objętość gazu nośnego z ksenonem przepływającego w czasie trwania piku ksenonowego wynosi ok. 50 cm³ i wymaga redukcji przed pomiarem (komora pomiarowa ma pojemność 6,4 cm³). Osiąga się to poprzez adsorpcję ksenonu na węglowym sicie molekularnym o masie 0,5 g umieszczonym w aluminiowej kolumnie o długości 12 cm i średnicy wewnętrznej 3 mm. Przy przepływie 10 cm3/min proces trwa 5 min i jest przeprowadzany w temperaturze otoczenia. Po tym czasie mała pompa próżniowa usuwa resztki gazu nośnego z kolumny i komory detekcyjnej, a następnie kolumna podgrzewana jest do 350 °C i ksenon z helem jako gazem nośnym przetłaczany jest do próżniowej komory detekcyjnej. Objętość tej próbki przy ciśnieniu atmosferycznym wynosi ok. 6 cm³.

SAUNA – pomiar

Trzecia część systemu pozwala wyznaczyć aktywność zaadsorbowanego ksenonu, a przy znanej objętości powietrza – stężenie aktywności ksenonu w zasysanym powietrzu.

Pomiar aktywności oparty jest na technice wykorzystania koincydencji *beta-gamma*. Polega ona na detekcji emitowanego promieniowania *beta* i towarzyszącego mu promieniowania *gamma* tylko wspólnie, nie zaś tylko jednego z nich. Wszystkie 4 rozważane izotopy radioksenonu (tab. 1) nadają się do tego celu co wielce wspomaga zdolność rozróżnienia aktywności poszczególnych izotopów ksenonu przez układ detekcyjny. Układ detekcyjny stanowi para scyntylacyjnych Nal(Tl) detektorów promieniowania *gamma* o średnicy 4 cali i wysokości 5 cali połączonych światłowodami z fotopowielaczami. W wydrążonych wzdłuż średnicy przez objętości czynne tych kryształów kanałach znajdują

Rys. 3. System detekcyjny SAUNA, na podstawie [1]

się scyntylacyjne detektory plastikowe do detekcji promieniowania *beta*, wraz z fotopowielaczami. Pomiędzy nimi, w centralnej części wydrążenia znajduje się komora pomiarowa, do której wstrzykiwana jest próbka ksenonu, jej wymiary to 50,8 mm długości i 6,35 mm średnicy wewnętrznej.

Grubość scyntylatorów plastikowych, 1 mm, została dobrana tak, aby zatrzymywane w niej były najszybsze elektrony emitowane z próbki (rozpad ¹³³Xe) o energii 350 keV. W celu zminimalizowania absorpcji niskoenergetycznego promieniowania X, aluminiowa powłoka pokrywająca od wewnątrz wydrążenie w krysztale jod-ku sodu ma grubość zaledwie 0,2 mm.

Osłonę stanowi domek wykonany z cegieł ołowianych (niskiej aktywności) o grubości 5 cm, wyścielony wewnątrz blachą miedzianą o grubości 5 mm w celu usunięcia kwantów charakterystycznego promieniowania X o energiach: 72,8 keV, 75,0 keV, 84,9 keV oraz 87,3 keV wytwarzanych w ołowiu przez promieniowanie otoczenia. Działanie detektorów jest regularnie kontrolowane przy użyciu źródła ¹⁵⁴Eu, wsuwanego do komory detekcyjnej na plastikowym pręciku przez silnik elektryczny.

Procesowanie sygnałów odbywa się w standardowej elektronice CAMAC i NIM. Sygnał z jednego z detektorów *beta* definiuje czas dla sygnału trygerującego i w połączeniu z sygnałem z drugiej sondy *beta* tworzy sygnał koincydencyjny *beta*. Jest on opóźniany i użyty do koincydencji z trzecim sygnałem z detektora Nal(Tl); połączony sygnał bramkuje konwerter analogowo-cyfrowy konwertujący wysokości sygnałów na postać cyfrową. Wynikiem jest dwuwymiarowe widmo *beta*-

12

gamma, zestawiające wysokość impulsu z detektora Nal z zsumowaną wysokością sygnałów z detektorów *beta*.

Zdolność rozdzielcza detektora Nal(Tl) wynosi 7 keV przy energii kwantu 30 keV i 45 keV przy energii 511 keV. Kalibracji wydajnościowej dokonuje się wstrzykując próbki radioksenonu odpowiadające aktywnością kilku Bq/m³ w powietrzu.

Uzyskiwane minimalne wykrywalne stężenia aktywności (MDC) dla ksenonu-133 są rzędu 1 mBq/m³, podobnie dla pozostałych radionuklidów ksenonu (dla dwunastogodzinnych okresów próbkowania).

2. System SPALAX

System SPALAX jest nieco prostszą realizacją założeń stawianych przez CTBT dla automatycznej stacji monitoringu radioksenonu. Uproszczony jest system osuszania i usuwania dwutlenku węgla, jak i system detekcyjny, oparty na wysokorozdzielczej spektrometrii promieniowania *gamma*. Podobnie jak system SAUNA również system SPALAX składa się z trzech części.

SPALAX – próbkowanie

Sekcja próbkująca zapewnia wstępne wzbogacenie próbki powietrza w ksenon.

Możliwe jest to dzięki użyciu polimerowych membran, wykonanych z kilkuset pustych włókien rurkowych, których wewnętrzna powierzchnia pokryta jest bardzo cienką warstwą polimeru. Wstępnie osuszone powietrze przepływając przez membrany pod ciśnieniem 8 atm (ok. 15 m³/h) zostaje wzbogacone w azot i ksenon (do 13 razy większa koncentracja ksenonu względem powietrza zasysanego). Wynika to ze zwiększonej przenikalności przez membrany dla tlenu, pary wodnej i dwutlenku węgla względem pozostałych gazów.

Wielką zaletą tego rodzaju rozwiązania jest możliwość ciągłej pracy bez potrzeby regeneracji i zupełna eliminacja O_2 , H_2O i CO_2 .

<u>SPALAX – przetwarzanie</u>

Kolejna sekcja, pułapkowania-prekoncentracji-oczyszczania zapewnia dalszą koncentrację oraz eliminację radonu z próbki.

Zawiera ona pułapkę selektywną dla gazów szlachetnych na węglu aktywnym, pracującą w temperaturze

otoczenia. Po czasie nieprzekraczającym czasu nasycenia pułapki ksenonem (węgiel aktywny ma skończoną powierzchnię zdolną przyłączyć ten gaz) następuje jego desorpcja (usunięcie z pułapki węglowej). Odbywa się to poprzez kolejne wygrzewanie trzech sekcji pułapki przy niewielkim strumieniu gazu nośnego, jakim jest azot uzyskiwany w sekcji próbkowania i czasowo przetrzymywany dla tego celu. Wykorzystywany jest tutaj spadek zdolności adsorpcyjnej węgla aktywnego ze wzrostem temperatury - pochłonięte gazy są uwalniane. Odpowiednio dobrany czas wygrzewania węgla aktywnego z zaadsorbowanymi gazami pozwala na oddzielenie ksenonu od radonu dzięki różnym temperaturom desorpcji tych gazów z adsorbenta węglowego. Ten ostatni usuwany jest później podczas wygrzewania wprost do atmosfery.

Urządzenie składa się z dwóch torów zawierających po trzy kolumny z węglem aktywnym. Oba tory pracują na zmianę w cyklach 3 h.

Sekcja ostatecznej koncentracji zawiera dwie kolumny z węglem aktywnym o małych objętościach przy których desorpcjach używane są coraz mniejsze strumienie nośnego N₂. Ksenon tak zebrany w ostatniej kolumnie z cyklu dobowego jest desorbowany przez wygrzanie do próżniowej komory detekcyjnej.

<u>SPALAX – pomiar</u>

Sekcja pomiarowa pozwala ilościowo wyznaczyć stężenie aktywności ksenonu w zasysanym powietrzu.

Komora detekcyjna znajduje się na detektorze planarnym, HPGe chłodzonym ciekłym azotem. Niskotłowy spektrometr pozwala na osiągnięcie MDC mniejszego niż 0,15 mBq/m³ dla ksenonu-133.

Całość stanowi komercyjną, zminimalizowaną wersję stacji opracowanej wcześniej przez Francuską Komisję Energii Atomowej. Industrializacji dokonała firma Environnement S.A.

3. System ARSA [2]

To system amerykański, który wykorzystuje zwiększoną wydajność adsorpcji gazów szlachetnych na węglu aktywnym w niskich temperaturach bez użycia ciekłego azotu.

Rys. 4. Schemat systemu ARSA na podstawie [2], objaśnienia w tekście

ARSA – pułapkowanie

Pierwsza część systemu odpowiada za wychwyt ksenonu z przepływającego powietrza.

Bezolejowy kompresor tłokowy (a) wymusza przepływ powietrza na poziomie ok. 7 m³/h przez filtr aerozolowy, wymiennik ciepła (b) oziębiający skompresowane powietrze do temperatury otoczenia i dalej przez przemysłowy osuszacz (c) wypełniony sitem molekularnym 13X i Al₂O₂ w stosunku 2:1; są to dwie kolumny, każda o długości ok. 150 cm i średnicy wewnętrznej 10 cm. Powietrze przepływa najpierw przez tlenek glinu, który usuwa z niego parę wodną, a następnie przez sito molekularne wychwytujące CO₂. Stałość strumienia przepływającego powietrza zapewniona jest przez elektroniczny kontroler przepływu, mierzący i regulujący go na bieżąco (d). Każda z kolumn posiada ilość materiału adsorbującego wystarczającą do usunięcia pary wodnej i CO₂ przy przepływie 7 m³/h przez ok. 5 h; podczas pracy jednej kolumny druga jest regenerowana przez wygrzewanie w temperaturze 350°C przy wstecznym przepływie osuszonego powietrza kierowanego z głównej pułapki węglowej.

Po osuszeniu powietrze kierowane jest do przemysłowego (PGC-150, PolyCold) urządzenia chłodzącego (**e**) przepływającą mieszaninę gazów do temperatury -125°C. Wykorzystana jest własność do wydajniejszej adsorpcji gazów szlachetnych w pułapkach węglowych przy niskich temperaturach [6], bez użycia ciekłego azotu, którego stosowanie stwarzałoby konieczność częstej ingerencji osoby obsługującej stację, w celu uzupełniania stale odparowującej cieczy.

W dalszej kolejności strumień powietrza kierowany jest do wstępnej pułapki radonowej (**f**), tj. niewielkiej objętościowo pułapki węglowej. Krótki czas kontaktu powietrza z węglem aktywnym zapewnia praktycznie zerową adsorpcję ksenonu, ale duże pochłanianie radonu. Pozwala na to większą zdolność wychwytywania cięższego gazu szlachetnego w niskiej temperaturze. Regeneracja wstępnej pułapki radonowej trwa 2 h i odbywa się w temperaturze 300 °C w próżni.

Za wstępną pułapką radonową znajduje się główna pułapka ksenonowa (**g**), o długości 20 cm i średnicy 10 cm, zdolna zaadsorbować ksenon z ok. 40 m³ powietrza (6 h przy przepływie 7 m³/h) na węglu aktywnym, utrzymywana w temperaturze -125°C. Z racji długiego czasu, jak i niskiej temperatury pułapkowania adsorpcji ulegają również inne gazy jak azot, tlen i argon; w celu ich usunięcia po adsorpcji pułapka zostaje poddana działaniu podciśnienia (100 Pa) przez ok. 30 min, przy czym w pułapce pozostaje nadal powyżej 90% zaadsorbowanego ksenonu.

<u>ARSA – oczyszczanie</u>

Druga część systemu odpowiada za oczyszczanie zaadsorbowanego ksenonu od pochłoniętego również podczas adsorpcji radonu.

Ksenon zaadsorbowany w głównej pułapce zostaje z niej wyzwolony podczas wygrzewania w temperaturze ok. 300°C przy przepływie nośnika – azotu (ok. 0,2 dm³/min ze zbiornika (**h**), (**i**) oraz (**j**) to kontrolery przepływu azotu) i kierowany jest do trzech kolejnych pułapek.

Pierwsza z nich (**k**), o długości 25 cm i średnicy 10 cm, zawiera mieszaninę askarytu (71%) i silikażelu (29%) i usuwa resztki CO_2 i H₂O z przepływającej mieszaniny gazów.

Druga pułapka (I), o długości 2 cm i średnicy 1 cm wypełniona jest sitem molekularnym 5A chłodzonym do temperatury -45°C, usuwa ona pozostałości radonu niezaadsorbowanego w pierwszej pułapce radonowej.

Ostatnią pułapką (**m**) jest ostateczna pułapka ksenonowa, wypełniona tym samym materiałem co główna, lecz o znacznie mniejszej objętości; jej wymiary to ok. 6 cm długości i 0,6 cm średnicy. Jest to objętość wystarczająca do adsorpcji zgromadzonego w głównej pułapce ksenonu przy przepływie 0,2 dm³/min w temperaturze poniżej -100°C. Następnie ksenon jest przetłaczany do komory pomiarowej o objętości około 6,4 cm³ (**n**). Odpompowanie komory, wygrzanie ostatecznej pułapki ksenonowej do temperatury 400°C i fakt znacznie większej objętości komory pomiarowej niż pułapki i doprowadzenia skutkuje większym niż 80% transferem ksenonu do komory.

<u>ARSA – pomiar</u>

Trzecia część systemu odpowiada za pomiar aktywności ksenonu.

Układ pomiarowy w tym systemie jest analogiczny do tego w systemie SAUNA – opiera się na koincydencji *beta-gamma* z wykorzystaniem scyntylatorów na końcach komory pomiarowej i otaczających ją detektorach Nal(Tl), różniący się jedynie geometrią.

Rys. 5. System detekcyjny ARSA, na podstawie [2]

Innym sposobem pomiaru charakteryzuje się czwarty system opracowany przez INGE, rosyjski ARIX – posługuje się *beta*-bramkowaną spektrometrią *gamma*. Jest to zatem układ koincydencyjny lecz niemierzący energii cząstki *beta*, a jedynie fakt jej przelotu przez detektor [8].

4. Krypton – metoda opracowana w Gent (Belgia) stosowana w Dublinie [3]

Aparatura wykorzystywana do zatężania próbki kryptonu składa się z szeregu pułapek utrzymywanych w ciekłym azocie (oprócz osuszającego sita molekularnego utrzymywanego w temperaturze pokojowej).

Wlot pobieranej próby powietrza (1) na rys. 5 umiejscowiony jest z prawej strony. Pierwsza pułapka (2) odpowiada za kondensacyjne usuwanie pary wodnej (i dwutlenku węgla) z powietrza – jest to zwykła wymrażarka azotowa.

Rys. 6. Schemat systemu zatężania kryptonu, na podstawie [3]

Drugą pułapkę (**3**) stanowi sito molekularne usuwające resztę pary wodnej i dwutlenku węgla z przepływającego powietrza. Wypełnienie stanowi sito 5A o rozmiarze ziaren 2 mm.

Kolejną kolumną jest solenoid ochładzający (**4**), a za nim pułapka z węgla aktywnego (**5**). Na niej adsorbowany jest krypton oraz małe ilości innych gazów, przede wszystkim azotu i tlenu. Podczas poboru próbki zawory V_1 , V_4 , V_5 i V_8 są otwarte, pozostałe zaś zamknięte, a więc powietrze po przejściu przez pułapkę węglową (**5**) jest usuwane przez pompę próżniową poza układ (**10**). Pułapka zwrotna (**9**) zapobiega ewentualnym zanieczyszczeniom układu olejem z pompy próżniowej wymuszającej przepływ powietrza przez układ.

Desorpcja następuje wskutek ogrzania pułapki węglowej (**5**) i krypton adsorbowany jest w mniejszej pułapce (**8**), rurce miedzianej wypełnionej sitem molekularnym 5A mesh 60/80, utrzymywanej w temperaturze ciekłego azotu. Podczas desorpcji otwarte pozostają jedynie zawory $V_{6'}$, $V_{7'}$, V_8 i oba zawory przy pułapce (**8**) – V_c .

Tak otrzymana próbka wysyłana jest do Gent w Belgii, gdzie następuje dalsza koncentracja kryptonu. Uzyskiwana jest ona poprzez przepuszczanie próbki przez szereg chromatograficznych kolumn z sitami molekularnymi przy udziale helu jako nośnika. Podczas adsorpcji kolumna utrzymywana jest w temperaturze ciekłego azotu. Desorpcja z kolumny do następnej odbywa się w temperaturze pokojowej. Powtarzanie procesów desorpcji/adsorpcji skutkuje wzbogaceniem próbki w krypton sięgającej 99,7%.

Pomiar aktywności opiera się na promieniowaniu *beta* emitowanym przez ⁸⁵Kr przy pomocy spektrometrii scyntylacyjnej, osiągane są 5% niepewności wyznacze-

14

nia koncentracji aktywności kryptonu-85 w powietrzu. Objętość powietrza odpowiadająca wyekstrahowanemu z niej kryptonu obliczana jest ze znanego udziału tego gazu w powietrzu atmosferycznym (1,14 ppm objętościowo); masa kryptonu wyznaczana jest przez zamknięcie go w znanej objętości i pomiar jego ciśnienia i temperatury.

Do ostatecznego oczyszczenia próbki uzyskanej przez zatężanie stosowane są również chromatografy gazowe [4].

Ze względu na wielkość stężenia aktywności prowadzone są również pomiary in-situ w czasie rzeczywistym w detektorach ustawionych na drodze chmury z kryptonem pochodzącej wprost z zakładu przerobu wypalonego paliwa jądrowego (La Hague, [7]).

Podsumowanie

Opisane w artykule stacje monitoringu radionuklidów gazów szlachetnych, zwłaszcza ksenonu, wykorzystywane są w sieci monitoringu radionuklidów CTBTO. Sieć monitoringu składa się (w skali światowej) z 80 stacji pobierających próby aerozoli z powietrza atmosferycznego, zaś 40 z nich wyposażonych jest w automatyczne systemy pomiaru stężeń radioksenonu.

W świetle planowanego rozwoju energetyki jądrowej w Polsce pożądanym jest stworzenie urządzeń do kontrolowania uwolnień gazów szlachetnych z instalacji jądrowych i ich rozproszenia na terenie kraju. W Instytucie Fizyki Jądrowej PAN w Krakowie zostały rozpoczęte przygotowania do budowy stacji pomiaru stężeń radionuklidów gazów szlachetnych w powietrzu atmosferycznym.

mgr inż. Paweł Janowski,

Akademia Górniczo-Hutnicza im. Stanisława Staszica, Instytut Fizyki Jądrowej im. H. Niewodniczańskiego PAN, Kraków

doktorant Interdyscyplinarnych Studiów Doktoranckich AGH-IFJ PAN-IK PAN, praca dotycząca opisywanych w artykule metod realizowana w IFJ im. H. Niewodniczańskiego PAN w Krakowie, realizowana w ramach projektu strategicznego "Technologie wspomagające rozwój bezpiecznej energetyki jądrowej" finansowanego przez Narodowe Centrum Badań i Rozwoju. Zadanie badawcze "Rozwój metod dla zapewnienia bezpieczeństwa jądrowego i ochrony radiologicznej dla obecnych i przyszłych potrzeb energetyki jądrowej". Projekt nr SP/J/6/143339/11.

Literatura

- [1] A. Ringbom et al. SAUNA a system for automatic samoling, processing and analysis of radioactive xenon, Nucl. Instr. And Meth. In Physics Res. A 508 (2003) 542-553
- [2] T. W. Bowyer et al. Automatic Radioxenon Analyzer for CTBT Monitoring, Pacific Northwest National Laboratory, Richland, Washington 99352, November 1996
- [3] D. Howett, M. O'Colmain Measurement of krypton-85 in air at Clonskeagh, Dublin 1993-1997, J. Radiol. Prot. vol. 18 (1998) No. 1 15-21.
- [4] L. Wilhelmowa, M. Tomasek, K. Stukheil *The Measu*rement of Low Concetrations of Kr-85 in Atmospheric Air Sample, Biological Trace Element Research, Volume 43-45 (1994), Number 1, 725-730.
- [5] T. W. Bowyer, J. C. Hayes, J. I. Melntyre Environmental Measurements of Radioxenon, Environmental Radiochemical Analysis III (312):44-50 (2007)
- [6] R. Sakurovs et al. *Temperature dependence of sorption of gases by coals and charcoals*, Intern. Journ. Of Coal Geology 73 (2008) 250-258
- [7] R. Guarrian et al. *In situ metrology of 85Kr plumes released by the COGEMA La Hague nuclear reprocessing plant*, Journ. Of Envir. Radioact. 72 (2004) 137-144
- [8] Notes on radioxenon measurements for CTBT verification purposes, Appl. Radiat. And Isotopes 63 (2005) 765-773

15