PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An experimental and numerical study of aluminium–concrete joints and composite beams

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study investigated the structural behaviour of aluminium–concrete composite (ACC) beams with profiled sheeting by means of conducting four-point bending tests on four ACC beams. In the proposed ACC system, a concrete slab was connected to aluminium girders by mechanical shear connectors developed by the authors of this article. The load-slip behaviour of the connections was characterised in push-out tests of connectors. In addition, non-linear 3D finite element (FE) models of the tested joints and composite beams were developed and verified against the experimental results. The comparison between the experimental and numerical results indicates that the adopted 3D model can capture the response of the ACC joints and composite beams fairly well.
Rocznik
Strony
375--390
Opis fizyczny
Bibliogr. 52 poz., fot., rys., tab., wykr.
Twórcy
  • Poznan University of Technology, Institute of Structural Engineering, Poznań, Poland
  • Poznan University of Technology, Institute of Structural Engineering, Poznań, Poland
Bibliografia
  • [1] F.M. Mazzolani, 3D aluminium structures, Thin-Walled Struct. 61 (2012) 258–266.
  • [2] M. Gwóźdź, Project problems of contemporary aluminium structures, Czasopismo Techniczne 104 (z. 4-A) (2007) 281–286 (in Polish).
  • [3] T. Siwowski, Structural behaviour of aluminium bridge deck panels, Eng. Struct. 31 (2009) 1349–1353.
  • [4] F.M. Mazzolani, A. Mandara, Modern trends in the use of special metals for the improvement of historical and monumental structures, Eng. Struct. 24 (2002) 843–856.
  • [5] Y. Chen, R. Feng, J. Xu, Flexural behaviour of CFRP strengthened concrete-filled aluminium alloy CHS tubes, Constr. Build. Mater. 142 (2017) 295–319.
  • [6] T. Siwowski, Aluminium bridges – past, present and future, Struct. Eng. Int. 16 (4) (2006) 286–293.
  • [7] M. Szumigała, Ł. Polus, Applications of aluminium and concrete composite structures, Proc. Eng. 108 (2015) 544–549.
  • [8] W. Dudziński, G. Pękalski, P. Harnatkiewicz, A. Kopczyński, W. Lorenc, M. Kożuch, S. Rowiński, Study on fatigue cracks in steel–concrete shear connection with composite dowels, Arch. Civil Mech. Eng. 11 (4) (2011) 839–858.
  • [9] A. Biegus, W. Lorenc, Development of shear connections in steel–concrete composite structures, Civil Environ. Eng. Rep. 15 (4) (2014) 23–32.
  • [10] Ł. Polus, M. Szumigała, Tests of shear connectors used in aluminium–concrete composite structures, in: M. Giżejowski, A. Kozłowski, J. Marcinowski, J. Ziółko (Eds.), Recent Progress in Steel and Composite Structures, CRC Press-Taylor & Francis Group, Boca Raton, 2016 133–136.
  • [11] European Committee for Standardization, EN 1994-1-1, Eurocode 4, Design of Composite Steel and Concrete Structures – Part 1-1: General Rules and Rules for Buildings, 2004 Brussels.
  • [12] W. Lorenc, E. Kubica, M. Kożuch, Testing procedures in evaluation of resistance of innovative shear connection with composite dowels, Arch. Civil Mech. Eng. 10 (3) (2010) 51–63.
  • [13] R.P. Johnson, H. Yuan, Models and design rules for stud shear connectors in troughs of profiled sheeting, Proc. Inst. Civil Eng. Struct. Build. 128 (1998) 252–263.
  • [14] S. Ernst, R.Q. Bridge, A. Wheeler, Push-out tests and a New approach for the design of secondary composite beam shear connections, J. Constr. Steel Res. 65 (2009) 44–53.
  • [15] G. Ranzi, M.A. Bradford, P. Ansourian, A. Filinov, K.J.R. Rasmmussen, T.J. Hogan, B. Uy, Full-scale tests on composite steel–concrete beams with steel trapezoidal decking, J. Constr. Steel Res. 65 (2009) 1490–1506.
  • [16] A.L. Smith, G.H. Couchman, Strength and ductility of headed stud shear connectors in profiled steel sheeting, J. Constr. Steel Res. 66 (2010) 748–754.
  • [17] P.-G. Lee, C.-S. Shim, S.-P. Chang, Static and fatigue behaviour of large stud shear connectors for steel–concrete composite bridges, J. Constr. Steel Res. 61 (2005) 1270–1285.
  • [18] J. Holomek, M. Bajera, M. Vilda, Test arrangement of smallscale shear tests of composite slabs, Proc. Eng. 161 (2016) 716–721.
  • [19] J.W. Rackham, G.H. Couchman, S.J. Hicks, Steel Decking: Best Practice for Design and Construction, The Steel Construction Institute and The Metal Cladding & Roofing Manufacturers Association, 2009.
  • [20] J. Nie, C.S. Cai, Steel–concrete composite beams considering shear slip effects, Struct. Eng. 129 (4) (2003) 495–506.
  • [21] J. Nie, C.S. Cai, T. Wang, Stiffness and capacity of steel–concrete composite beams with profiled sheeting, Eng. Struct. 27 (2005) 1074–1085.
  • [22] P. Kania, Connection of steel–concrete composite beam made by shot fired studs, in: T. Bilinski (Ed.), Composite Structures, University of Zielona Góra, 2008 159–171 (in Polish).
  • [23] D. Kisała, K. Furtak, The assessment of the slip influence on the deflection of the steel plate–concrete composite beams, Arch. Civil Eng. 62 (2) (2016) 59–76.
  • [24] B. Jarek, M. Radoń, The slip in bending composite steel–concrete beams on the base of experimental researches, in: L. Szopa, M. Pantak, B. Jarek (Eds.), Composite Bridge Structures, Cracow University of Technology, 2009 199–208 (in Polish).
  • [25] P. Kmiecik, M. Kamiński, Analysis of the horizontal shear load capacity of concrete composite structures, in: 10th International Conference on Modern Building Materials, Structures and Techniques, Vilnius, Lithuania, 19 May through 21 May 2010, (2010) 691–696.
  • [26] A. Halicka, Analysis of support zones in composite concrete beams using MCFT, Arch. Civil Mech. Eng. 6 (4) (2006) 49–66.
  • [27] R.P. Johnson, A.J. Shepherd, Resistance to longitudinal shear of composite slabs with longitudinal reinforcement, J. Constr. Steel Res. 82 (2013) 190–194.
  • [28] W. Kucharczuk, S. Labocha, Analysis of the resistance and the stiffness of the composite beams, depending on the degree of shear connection, J. Civil Eng. Environ. Archit. 60 (2) (2013) 175–188.
  • [29] A. Hassanieh, H.R. Valipour, A. Bradford, Experimental and analytical behaviour of steel–timber composite connections, Constr. Build. Mater. 118 (2016) 63–75.
  • [30] A. Hassanieh, H.R. Valipour, M.A. Bradford, Experimental and numerical study of steel–timber composite (STC) beams, J. Constr. Steel Res. 122 (2016) 367–378.
  • [31] M. Szumigała, E. Szumigała, Ł. Polus, Laboratory tests of new connectors for timber–concrete composite structures, Eng. Trans. 66 (2) (2018) 161–173.
  • [32] A. Li, K. Cederwall, Push-out tests on studs in high strength and normal strength concrete, J. Constr. Steel Res. 36 (1) (1996) 15–29.
  • [33] Abaqus 6.13 Documentation, Abaqus Analysis Users Guide, Abaqus Theory Guide.
  • [34] R. Studziński, K. Ciesielczyk, Connection stiffness between thin-walled beam and sandwich panel, J. Sandw. Struct. Mater. (2017), http://dx.doi.org/10.1177/1099636217750539.
  • [35] A.S. Genikomsou, M.A. Polak, Finite element analysis of punching shear of concrete slabs using damaged plasticity model in Abaqus, Eng. Struct. 98 (2015) 38–48.
  • [36] P. Kmiecik, M. Kamiński, Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration, Arch. Civil Mech. Eng. 11 (3) (2011) 623–636.
  • [37] T. Jankowiak, T. Łodygowski, Quasi-static failure criteria for concrete, Arch. Civil Mech. Eng. 56 (2) (2010) 123–153.
  • [38] I. Jankowiak, Analysis of RC beams strengthened by CFRP strips – experimental and FEA study, Arch. Civil Mech. Eng. 12 (3) (2012) 376–388.
  • [39] I. Jankowiak, A. Madaj, Numerical analysis of effectiveness of strengthening concrete slab in tension of the steel–concrete composite beam using pretensioned CFRP strips, Civil Environ. Eng. Rep. 27 (4) (2017) 5–15.
  • [40] European Committee for Standardization, EN 1992-1-1, Eurocode 2, Design of Concrete Structures – Part 1-1: General Rules and Rules for Buildings, 2004 Brussels.
  • [41] T. Wang, T.T.C. Hsu, Nonlinear finite element analysis of concrete structures using new constitutive models, Comput. Struct. 79 (32) (2001) 2781–2791.
  • [42] Z.P. Bazant, E. Becq-Giraudon, Statistical prediction of fracture parameters of concrete and implications for choice of testing standard, Cem. Concr. Res. 32 (2002) 529–556.
  • [43] D.A. Hordijk, Local Approach to Fatigue of Concrete, PhD Thesis, Delft University of Technology, 1991.
  • [44] European Committee for Standardization, EN ISO 6892-1, Metallic Materials-Tensile Testing – Part 1: Method of Test at Room Temperature, 2009 Brussels.
  • [45] European Committee for Standardization, EN 12390-13, Testing Hardened Concrete – Part 13: Determination of Secant Modulus of Elasticity in Compression, 2013 Brussels.
  • [46] European Committee for Standardization, EN 12390-6, Testing Hardened Concrete – Part 6: Tensile Splitting Strength of Test Specimens, 2011 Brussels.
  • [47] K. Furtak, Evaluation of the influence of shrinkage strain on the fatigue strength of the connection in steel–concrete composite beams, Arch. Civil Mech. Eng. 15 (3) (2015) 767–774.
  • [48] K. Flaga, The influence of concrete shrinkage on durability of reinforced structural members, Bull. Pol. Acad. Sci. Tech. Sci. 63 (1) (2015) 15–22.
  • [49] D. Puchalska, M. Kuczma, Shrinkage and creep of concrete according to standards, a comparative analysis, Part 1, Builder 1 (2017) 69–71 (in Polish).
  • [50] A. Pełka-Sawenko, T. Wróblewski, M. Szumigała, Validation of computational models of steel–concrete composite beams, Eng. Trans. 64 (1) (2016) 53–67.
  • [51] L. Kwaśniewski, E. Szmigiera, M. Siennicki, Finite element modeling of composite concrete-steel columns, Arch. Civil Eng. 57 (4) (2011) 373–388.
  • [52] M. Patrick, Composite Beam Shear Connection, Design and Detailing Practices for Australian Steel Decks, University of Western Sydney, 2004 Report No. CCTR-CBSC-001-04.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57a31b0c-86dd-4c33-85ec-106b350ca21e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.