PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potential of Two Vegetable Plants in Reducing Lead Contamination in Soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phytoremediation is the technique of using green plants to remove toxic pollutants from heavy metal contaminated soil through degradation and detoxification mechanisms. Therefore, this research examines the potential of two types of vegetable crops, namely Crassocephalum crepidioides and Amaranthus sp., in reducing Pb contamination in polluted soil. The treatments tested were planting media in polybags dosed with 0.3 and 6 g/polybag of Pb 1 week before planting. The method used was a randomized block design, with each treatment being repeated three times. Furthermore, each treatment consists of three sample plants. The growth evaluation started 6 days after planting and was performed every 6 days. The evaluation was conducted on plant height, leaf area, leaf chlorophyll content, fresh and dry weight of roots and shoots, Pb levels in roots and shoots, and Translocation Factor (TF). The results showed that the higher the Pb in the media, the lower the rate of change in plant height, leaf area, biomass, and chlorophyll content. Additionally, C. crepidioides and Amaranthussp. absorb Pb in the soil with a phytoextraction mechanism, thereby remediating heavy metal contaminated soil, as indicated by the TF value > 1. In conclusion,soil remediation should be performed using C. crepidioides, considering that it is less popular as a vegetable in Indonesia.
Rocznik
Strony
320--326
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Faculty of Agriculture, University of Islam Malang, MT. Haryono Street No. 193, Malang, East Java, Indonesia
  • Faculty of Agriculture, University of Islam Malang, MT. Haryono Street No. 193, Malang, East Java, Indonesia
Bibliografia
  • 1. Ali H., Khan E., Sajad M.A. 2013. Phytoremediation of heavy metals – concepts and applications. Chemosphere, 91(7), 869–881.
  • 2. Bharagava R.N., Chowdhary P., Saxena G. 2017. Bioremediation: an eco-sustainable green technology: its applications and limitations. In Environmental Pollutants and Their Bioremediation Approaches, 1–22.
  • 3. Brunet J., Repellin A., Varrault G., Terryn N., Zuily-Fodil Y. 2008. Lead accumulation in the roots of grass pea (Lathyrus sativus L.): a novel plant for phytoremediation systems?. Comptes Rendus Biologies, 331(11), 859–864.
  • 4. Carvalho M.E., Castro P.R., Azevedo R.A. 2020. Hormesis in plants under Cd exposure: from toxic to beneficial element?. Journal of Hazardous Materials, 384, 121434.
  • 5. Cenkci S., Ciğerci İ.H., Yıldız M., Özay C., Bozdağ A., Terzi H. 2010. Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environmental and Experimental Botany, 67(3), 467–473.
  • 6. Chandra R., Saxena G., Kumar V. 2015. Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management. In Advances in Biodegradation and Bioremediation of Industrial Waste, 15–44.
  • 7. Cheng D., Liu X., Zhang H., Zou Z., Zhu G. 2021. The Potentiality of Crassocephalum crepidioides for Phytoremediation of Cd Contaminated Soil under the Application of EDTA. In IOP Conference Series: Earth and Environmental Science, 687, IOP Publishing.
  • 8. Chirakkara R.A., Cameselle C., Reddy K.R. 2016. Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants. Reviews in Environmental Science and Bio/Technology, 15(2), 299–326.
  • 9. Choudhury S., Panda S.K. 2004. Induction of oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under lead and arsenic phytotoxicity. Current Science, 10, 342–348.
  • 10. Çimrin K.M., Turan M., Kapur B. 2007. Effect of elemental sulphur on heavy metals solubility and remediation by plants in calcareous soils. Fresenius Environmental Bulletin, 16(9), 1113–1120.
  • 11. Dalla Vecchia F, La Rocca N., Moro I., De Faveri S., Andreoli C., Rascio N. 2005. Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Science, 168(2), 329–338.
  • 12. Dixit R., Malaviya D., Pandiyan K., Singh U.B., Sahu A., Shukla R., Singh B.P., Rai J.P., Sharma P.K., Lade H., Paul D. 2015. Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability, 7(2), 2189–2212.
  • 13. Fargašová A. 2001. Phytotoxic effects of Cd, Zn, Pb, Cu and Fe on Sinapis alba L. seedlings and their accumulation in roots and shoots. Biologia Plantarum, 44(3), 471–473.
  • 14. Gill S.S., Khan N.A., Tuteja N. 2012. Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Science, 182, 112–120.
  • 15. Guerin T.F., Horner S., McGovern T., Davey B. 2002. An application of permeable reactive barrier technology to petroleum hydrocarbon contaminated groundwater. Water Research, 36(1), 15–24.
  • 16. Gupta A.K., Sinha S. 2008. Decontamination and/or revegetation of fly ash dykes through naturally growing plants. Journal of Hazardous Materials, 153(3), 1078–1087.
  • 17. Ho W.M., Ang L.H., Lee D.K. 2008. Assessment of Pb uptake, translocation and immobilization in kenaf (Hibiscus cannabinus L.) for phytoremediation of sand tailings. Journal of Environmental Sciences, 20(11), 1341–1347.
  • 18. Iqbal N., Masood A., Nazar R., Syeed S., Khan N.A. 2010. Photosynthesis, growth and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in cadmium tolerance. Agricultural sciences in China, 9(4), 519–527.
  • 19. Jaishankar M., Tseten T., Anbalagan N., Mathew B.B., Beeregowda K.N. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60.
  • 20. Kacálková L., Tlustoš P., Száková J. 2015. Phyto-extraction of risk elements by willow and poplar trees. International journal of phytoremediation, 17(5), 414–421.
  • 21. Kevresan S., Petrovic N., Popovic M., Kandrac J. 2001. Nitrogen and protein metabolism in young pea plants as affected by different concentrations of nickel, cadmium, lead, and molybdenum. Journal of Plant Nutrition, 24(10), 1633–1644.
  • 22. Khan M.M., Islam E., Irem S., Akhtar K., Ashraf M.Y., Iqbal J., Liu D. 2018. Pb-induced phytotoxicity in para grass (Brachiaria mutica) and Castorbean (Ricinus communis L.): Antioxidant and ultrastructural studies. Chemosphere, 200, 257–265.
  • 23. Krzesłowska M. 2011. The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiologiae Plantarum, 33(1), 35–51.
  • 24. Lee J.H. 2013. An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnology and Bioprocess Engineering, 18(3), 431–439.
  • 25. Lei K., Giubilato E., Critto A., Pan H., Lin C. 2016. Contamination and human health risk of lead in soils around lead/zinc smelting areas in China. Environmental Science and Pollution Research, 23(13), 13128–13136.
  • 26. Lestari M.W. 2021. Heavy metal content in the leaves of Crassocephalum crepidioides due to the application of various types of manure. In IOP Conference Series: Earth and Environmental Science, IOP Publishing, 733.
  • 27. Li H., Liu Y., Chen Y., Wang S., Wang M., Xie T., Wang G. 2016. Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability. Scientific Reports, 6(1), 1–8.
  • 28. Mahar A., Wang P., Ali A., Awasthi M.K., Lahori A.H., Wang Q., Li R., Zhang Z. 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a Review. Ecotoxicology and Environmental Safety, 126, 111–121.
  • 29. Maszenan A.M., Liu Y., Ng W.J. 2011. Bioremediation of wastewaters with recalcitrant organic compounds and metals by aerobic granules. Biotechnology Advances, 29(1), 111–123.
  • 30. Muthusaravanan S., Sivarajasekar N., Vivek J.S., Paramasivan T., Naushad M., Prakashmaran J., Gayathri V., Al-Duaij O.K. 2018. Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environmental Chemistry Letters, 16(4), 1339–1359.
  • 31. Padmavathiamma P.K., Li L.Y. 2007. Phytoremediation technology: hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184(1), 105–126.
  • 32. Piotrowska A., Bajguz A., Godlewska-Żyłkiewicz B., Czerpak R., Kamińska M. 2009. Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environmental and Experimental Botany, 66(3), 507–513.
  • 33. Rezania S., Taib S.M., Din M.F., Dahalan F.A., Kamyab H. 2016. Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. Journal of Hazardous Materials, 318, 587–599.
  • 34. Sarwar N., Imran M., Shaheen M.R., Ishaque W., Kamran M.A., Matloob A., Rehim A., Hussain S. 2017. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere, 171, 710–721.
  • 35. Saxena G., Bharagava R.N. 2017. Organic and inorganic pollutants in industrial wastes: ecotoxicological effects, health hazards, and bioremediation approaches. In: Environmental Pollutants and Their Bioremediation Approaches, 23–56.
  • 36. Saygideger S., Dogan M., Keser G. 2004. Effect of lead and pH on lead uptake, chlorophyll and nitrogen content of Typha latifolia L. and Ceratophyllum demersum L. International Journal Agriculture and Biology, 6(1), 168–172.
  • 37. Sharma P., Dubey R.S. 2005. Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 35–52.
  • 38. Singh R., Tripathi R.D., Dwivedi S., Kumar A., Trivedi P.K., Chakrabarty D. 2010. Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresource Technology, 101(9), 3025–3032.
  • 39. Soares C., Carvalho M.E., Azevedo R.A., Fidalgo F. 2019. Plants facing oxidative challenges—A little help from the antioxidant networks. Environmental and Experimental Botany, 161, 4–25.
  • 40. Xie Y., Wang L., Yang L., Yan W., He Z., Tang Y., Liao M.A., Zhou X. 2021. Intercropping with Eclipta prostrata and Crassocephalum crepidioides decrease cadmium uptake of tomato seedlings. International Journal of Environmental Analytical Chemistry, 101(9), 1231–1239.
  • 41. Xin J.P., Zhang Y., Tian R.N. 2018. Tolerance mechanism of Triarrhena sacchariflora (Maxim.) Nakai seedlings to lead and cadmium: Translocation, subcellular distribution, chemical forms and variations in leaf ultrastructure. Ecotoxicology and Environmental Safety, 165, 611–621.
  • 42. Yadav S.K. 2010. Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 76(2), 167–179.
  • 43. Yoon J., Cao X., Zhou Q., Ma L.Q. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of The Total Environment, 368(2–3), 456–464.
  • 44. Zhang S.J., Li T.X., Huang H.G., Zhang X.Z., Yu H.Y., Zheng Z.C., Wang Y.D., Zou T.J., Hao X.Q., Pu Y.O. 2014. Phytoremediation of cadmium using plant species of Athyrium wardii (Hook.). International Journal of Environmental Science and Technology, 11(3), 757–64.
  • 45. Zu Y., Li Y., Min H, Zhan F., Qin L., Wang J. 2015. Subcellular distribution and chemical form of Pb in hyperaccumulator Arenaria orbiculata and response of root exudates to Pb addition. Frontiers of Environmental Science & Engineering, 9(2), 250–258.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-579ff4cb-f51b-4de6-a7fb-1396a2ba4c9e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.