PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Convolution integral in transient pipe flow

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is devoted to the modeling of hydraulic losses during transient flow of liquids in pressure lines. Unsteady pipe wall shear stress is presented in the form of a convolution integral of liquid acceleration and a weighting function. The weighting function depends on the dimensionless time and the Reynolds number. In its first revision (Zielke W 1968 J. ASME 90 109) it had a complex and inefficient mathematical structure (featured power growth of computational time). Therefore, further work aimed at developing the so-called efficient models for correct estimation of hydraulic resistance with simultaneous linear loading of the computer's operating memory was needed. The work compared the methods of numerical solving of the convolution integral known from the literature (classic by Zielke W 1968 J. ASME 90 109 and Yardy A E and Brown J M B 2010 J. Hydratd. Eng. 136 (7) 453 and efficient by Trikha A K 1975 J. Fluids Eng. p. 97. Kagawa T et at. 1983 Trans. Jpn. Soc. Mech. Eng. 49 (447) 2638 and Schohl G A 1993 J. Fluids Eng. 115 420). The comparison highlighted the level of usefulness of the analyzed models in simulating the water hammer and revealed the demand for further research for the improvement of efficiency of the solutions.
Rocznik
Strony
277--291
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology, Faculty of Mechanical Engineering and Mechatronics, Department of Mechanics and Machine Elements
autor
  • West Pomeranian University of Technology, Faculty of Mechanical Engineering and Mechatronics, Department of Mechanics and Machine Elements
Bibliografia
  • [1] Adamkowski A and Lewandowski M 2006 J. Fluids Eng. 128 1351
  • [2] Kagawa T, Lee I, Kitagawa A and Takenaka T 1983 Trans. Jpn. Soc. Mech. Eng., Ser. A 49 ( 447) 2638 (in Japanese)
  • [3] Kudźma S 2005 Modeling and Simulation Dynamical Runs in Closed Conduits of Hydraulics Systems using Unsteady Friction Model PhD Thesis, Szczecin University of Technology (in Polish)
  • [4] Schohl G A 1993 J. Fluids Eng., Trans. ASME 115 420
  • [5] Trikha A K 1975 J. Fluids Eng., Trans. ASME 97
  • [6] Urbanowicz K, Zarzycki Z and Kudźma S 2010 TASK Quart. 14 (3) 175
  • [7] Urbanowicz K and Zarzycki Z 2012 J. Theor. Appl. Mech. 50 (2) 487
  • [8] Vardy A E and Brown JMB 2004 J. Hydraul. Eng., ASCE 130 (11) 1097
  • [9] Vardy A E and Brown JMB 2010 J. Hydraul. Eng. 136 (7) 453
  • [10] Vardy A E and Brown JMB 1996. Proc. 7th Int. Conf. on Pressure Surges, BHR Group, Harrogate, United Kingdom, pp. 289-311
  • [11] Vardy A E and Brown JMB 2004 J. Sound and Vibration 270 233
  • [12] Vardy A E and Brown J M B 2003 J. Sound and Vibration 259 (5) 1011
  • [13] Vardy A E and Brown JMB 1995 J. Hydraul. Res. 33 435
  • [14] Vardy A E, Hwang K L and Brown JMB 1993 J. Hydraul. Res. 31 (4) 533
  • [15] Vitkovsky J P, Stephens M L, Bergant A, Simpson A R and Lambert M F 2004 9th Int. Conf. on Pressure Surges. Chester, United Kingdom, pp. 405-419
  • [16] Zarzycki Z, Kudźma S and Urbanowicz K 2011 J. Theor. Appl. Mech. 49 (1) 135
  • [17] Zarzycki Z and Kudźma S 2004 Proc. 9th Int. Conf. on Pressure Surges, BHR Group, Chester. United Kingdom, pp. 439-455
  • [18] Zarzycki Z 1994 A Hydraulic Resistance's of Unsteady Liquid Flow in Pipes, Published by Technical University of Szczecin 516 (in Polish)
  • [19] Zarzycki Z 2000 Proc. 8th Int. Conf. on Pressure Sergues, BHR Group, The Hague, The Netherlands 39, pp. 529-534
  • [20] Zielke W 1968 J. ASME 90 109
  • [21] Brown F T 1962 Trans. ASME, J. Baste Eng. 84 547
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-579e831e-51ee-4cd7-80e8-8c25999b97f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.