PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis, electrical and magnetic properties of polymer coated magnetic nanoparticles for application in MEMS/NEMS

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this research work, polymer coated magnetic nanoparticles were prepared by co-precipitation method. The samples were characterized by XRD, SEM, EDS, VSM and two probe DC conductivity measurements. XRD pattern indicated the existence of a sole cubic phase of Fe3O4 with Miller indices (2 2 0), (3 1 1), (5 1 1), (4 4 0). An average size of magnetic nanoparticles was about 22.9 nm and it was reduced to 21.3 nm and 19.4 nm after 1 wt. %. and 2 wt. % coating of PEG-6000, respectively. The morphology and size of the samples were investigated by scanning electron microscope (SEM). EDX spectra confirmed the coating of PEG on magnetic nanoparticles. Magnetic properties were examined by vibrating sample magnetometer (VSM). Saturation magnetization (Ms) decreased as the concentration of PEG increased in the magnetic material. Electrical properties of uncoated and polymer coated Fe3O4 nanoparticles were studied by two-probe conductivity meter. This study concluded that the thermal flow of charge in polymer coated magnetic nanoparticles can be evaluated at micro and nano level.
Wydawca
Rocznik
Strony
553--558
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Department of Basic Sciences (Physics), University of Engineering and Technology, Taxila, 47050, Pakistan
  • Department of Basic Sciences (Physics), University of Engineering and Technology, Taxila, 47050, Pakistan
autor
  • Department of Physics, The Islamia University of Bahawalpur, 63100, Pakistan
  • Department of Physics, The Islamia University of Bahawalpur, 63100, Pakistan
  • Department of Physics, University of Gujrat, Gujrat, 50700, Pakistan
autor
  • Department of Physics, CIIT, COMSAT, Lahore, 54750, Pakistan
  • Department of Software Engineering, University of Engineering and Technology, Taxila, 47050, Pakistan
Bibliografia
  • [1] OLIVEIRA D., BARUD S., SALVI D., PEROTTI G., RIBERIO S., Indian Crop. Prod., 69, (2015), 415.
  • [2] XU H., CHENG L., WANG C., MA X., LI Y., LIU Z., Biomaterials, 32: (2011), 936
  • [3] CHAI C.C., LEE Z.H., TOH P.Y., CHIEH C.J, AHMAD A.L., LIM J.K., Chem. Eng. J., 281, (2015), 523.
  • [4] HAUSER A.K., WYDRA R.J., STOCKE A., ANDERSON W., HILT Z., J. Cont. Rel., 219, (2015), 76.
  • [5] LENG J., LI J., REN J., DENG L., LIN C., Mater. Lett., 152, (2015), 185.
  • [6] HEID A., BAHROLOLOOM M., VASHAEE D., TAYEBI I., Ceramic. International., 41, (2015), 3094.
  • [7] OMIDI H.M., MAHBOOBEH A., FARIDEH P., Materials Science-Poland 35, (2017), 105-110.
  • [8] SUN X., KEATING A., PARISH G., Micropor. Mesopor. Mat., 218, (2015), 88.
  • [9] THANGAWNG A.L., RODNEY S.R., MELODY A.S., Biomedical Microdevices 9, (2007), 587-595.
  • [10] JAVID MA., SADAQAT N., RAFIQUE M., Materials Today: Proceedings. (2020).
  • [11] JAVID MA., U.ZAFAR, H.FAYYAZ, M.IMRAN., Int. J. Mod. Phys. B, 32 (14), (2018), 13.
  • [12] JAVID MA., FAYYAZ H., IMRAN M., Mater. Sci.- Poland, 34, (2016), 741.
  • [13] AZEEM N., MA. JAVID, TAHIR I., J. Semicond, 38. (2017), 7.
  • [14] SABATER AB., JEFF R., J. Micromech. Microeng., 24, (2014), 065005.
  • [15] NARBUTOVSKIH M., FIELD L., CLIFFORD G., BECK P., Sensor. Actuat. A-Phys., 70 , (1998), 128.
  • [16] KIM S., ROY S., Adv. Chronic. Kidney D, 20, (2013), 516.
  • [17] ATTALLAH A., GIRGIS E., J. Magn. Magn. Mater., 399, (2016), 58.
  • [18] MANRIQUE J., MACHUCA F., MARRIGA F., J. Magn. Magn. Mater., 401, (2016), 81.
  • [19] LI X., LIU G., YAN W., CHU P.K., WU S., YI C., XU Z., J. Magn. Magn. Mater., 324, (2012), 1410.
  • [20] CANTALAPIEDRA A., GISMERA M.J., PROCOPIO JR., SEVILLA M.T., Talanta, 139, (2015), 111.
  • [21] CORNELL R.M., SCHWERTMANN U., The iron oxides.VCH Press, Weinheim, Germany, (1996).
  • [22] ARSHAD J., SADDIQUE A., ZAHID M., Mater. SciPoland, 25 (2019), 359.
  • [23] JAVID M.A., Materials Today: Proceedings (2020).
  • [24] HARSHA N., SWATHI K., NEEROLI K.R., SATYAJIT S., RSC Adv., 38, (2015), 30354.
  • [25] TAKENAKA K., OZAWA A., SHIBAYAMA T., URANO C., Appl. Phys. Letters; 9 (2011), 022103.
  • [26] KATIKANEANI P., AJAY K V., NARENDER RT., RAMU B., SRIVANI K., J. Nanosci., (2016).
  • [27] SHANMUGA SI., MAYANK S., SHAMPA S., Transl. Biomed., 6,3: (2015).
  • [28] FRANCO A., THIAGO AL., EMÍLIA LI., ELOISA N., Appl. Phys. A, 94 (1) (2009), 131.
  • [29] MARKHULIA J., MIKELASHVILI V., KEKUTIA L., J. Pharm. Appl. Chem., 2, (2016), 33.
  • [30] KHALKHALI M., ROSTAMIZADEH K., SADIGHIAN S., J. Pharm. Sci., 23 (2015), 45.
  • [31] MAHDAVI M., AHMAD B., HARON J., RAHMAN A.,J., Molecules, 18 (2013), 7533.
  • [32] ANBARASU M., ANANDAN E., CHINNASAMY V.,GOPINATH K., Spectrochim. Acta A, 135 (2015), 536.
  • [33] YUNAS J., Polymers, 5 (2020), 1184.
  • [34] VELLA L., EMERSON D., ASEG Extended Abstracts, 1 (2012), 1.
  • [35] SCHWERTMANN U., ROCHELLE MC., Iron oxides in the laboratory: preparation and characterization. John Wiley & Sons, 2008.
  • [36] ESLAMIAN M., MORTEZA M., ZIAD S., Fluid Dynamics and Material Processing, 2012.
  • [37] WEIDENFELLER E., HÖFER M., FRANK S., Composites Part A: Appl. Sci. Manuf, 33, (2002), 1041.
  • [38] CIMALLA V., JOERG P., OLIVER A., J. Physics D: Appl. Phys, 40, 20 (2007), 6386.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-579681ec-9102-46da-b221-0a3daa22ccbd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.