PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Unsteady flow of a couple stress fluid due to sudden withdrawal of pressure gradient in a parallel plate channel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The investigation of the couple stress fluid flow behaviour between two parallel plates under sudden stoppage of the pressure gradient is considered. Initially, a flow of couple stress fluid is developed between the two parallel plates under a constant pressure gradient. Suddenly, the applied pressure gradient is stopped, and the resulting unsteady flow is studied. This type of flow is known as run-up flow in the literature. Now the flow is expected to come to rest in a long time. Usually, these types of problems are solved by using the Laplace transform technique. There are difficulties in obtaining the inverse Laplace transform; hence, many researchers adopt numerical inversions of Laplace transforms. In this paper, the problem is solved by using the separation of variables method. This method is easier than the transform method. The velocity field is analytically obtained by applying the usual no-slip condition and hyper-stick conditions on the plates, and hence the volumetric flow rate is derived at subsequent times. The steady state solution before the withdrawal of the pressure gradient is matched with the initial condition on time. The rest time, i.e. the time taken by the fluid to come to rest after the pressure gradient is withdrawn is calculated. The graphs for the velocity field at different times and different couple stress parameters are drawn. In the special case when a couple stress parameter approaches infinity, couple stress fluid becomes a viscous fluid. Our results are in good agreement with this special case.
Rocznik
Strony
179--184
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • Department of Mathematics, National Institute of Technology Warangal, Telangana 506004, India
  • Department of Mathematics, National Institute of Technology Warangal, Telangana 506004, India
  • Department of Mathematics, National Institute of Technology Warangal, Telangana 506004, India
Bibliografia
  • [1] Stokes, V.K. (1984). Couple stresses in fluids. In Theories of Fluids with Microstructure: An Introduction (pp. 34−80). Springer, Berlin, Heidelberg.
  • [2] Rao, S.L., & Iyengar, T.K.V. (1985). Analytical and computational studies in couple stress fluid flows: UGC Research project C-8-4/82 SR III.
  • [3] Ezzat, M.A. (2001). Free convection effects on perfectly conducting fluid. International Journal of Engineering Science, 39(7),799−819. doi: 10.1016/S0020-7225(00)00059-8
  • [4] Ali, R., Nazar, M., Bilal, M., & Salem, A. (2016). Analytic and numerical solutions for axisymmetric flow with partial slip. Engineering with Computers, 32, 149−154. doi: 10.1007/s00366-015-0405-2
  • [5] Ahmed, J., Khan, Z.H., Malik, M.Y., Hussain, A., & Gayathri, D. (2015). A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet. AIP Advances, 5(11), 117117. doi:10.1063/1.4935571
  • [6] Farooq, A., Ali, R., & Benim, A.C. (2018). Soret and Dufour effects on three-dimensional Oldroyd-B fluid. Physica A: Statistical Mechanics and Its Applications, 503, 345−354. doi: 10.1016/j.physa.2018.02.204
  • [7] Ali, R., Hussain, M.Y., Jamil, M., & Suleman, M. (2020). Computational approach on three-dimensional flow of couple-stress fluid with convective boundary conditions. Physica A: Statistical Mechanics and Its Applications, 553, 124056. doi: 10.1016/j.physa.2019.124056
  • [8] Erdogan, M.E., & Imrak, C.E. (2005). On unsteady unidirectional flows of a second grade fluid. International Journal of Non-Linear Mechanics, 40(10), 1238−1251. doi: 10.1016/j.ijnonlinmec.2005.05.004
  • [9] Erdoğan, M.E., & Imrak, C.E. (2007). On some unsteady flows of a non-Newtonian fluid. Applied Mathematical Modelling,31(2), 170−180. doi: 10.1016/j.apm.2005.08.019
  • [10] Jaiswal, S., & Yadav, P.K. (2023). Physics of generalized Couette flow of immiscible fluids in anisotropic porous medium. International Journal of Modern Physics B, 2450377. doi: 10.1142/S0217979224503776
  • [11] Yadav, P.K., & Verma, A.K. (2023). Analysis of the MHD flow of immiscible fluids with variable viscosity in an inclined channel. Journal of Applied Mechanics and Technical Physics, 64(4), 618−627. doi: 10.1134/S0021894423040077
  • [12] Yadav, S., Yadav, S., & Yadav, P.K. (2024). The mixed convection thermally radiated hybrid nanofluid flow through an inclined permeable shrinking plate with slip condition and inclined magnetic effect. Chinese Journal of Physics, 89, 1041-1050. doi:10.1016/j.cjph.2023.12.039
  • [13] Yadav, P.K., & Yadav, N. (2023). A study on the flow of couple stress fluid in a porous curved channel. Computers & Mathematics with Applications, 152, 1−15. doi: 10.1016/j.camwa.2023.10.004
  • [14] Yadav, P.K., & Yadav, N. (2023). Entropy generation analysis in micropolar-couple stress fluid’s flow in an inclined porous channel using Homotopy Analysis Method. Chinese Journal of Physics, 86, 469−496. doi: 10.1016/j.cjph.2023.10.024
  • [15] Yadav, P.K., & Verma, A.K. (2023). Analysis of the MHD flow of immiscible fluids with variable viscosity in an inclined channel. Journal of Applied Mechanics and Technical Physics, 64(4),618−627. doi: 10.1134/s0021894423040077
  • [16] Kumar, A., & Yadav, P.K. (2023). Entropy generation analysis of non-miscible couple stress and Newtonian fluid in an inclined porous channel with variable flow properties: HAM Analysis. International Journal of Modern Physics B, 2450390. doi: 10.1142/s0217979224503909
  • [17] Kazakia, J.Y., & Rivlin, R.S. (1981). Run-up and spin-up in a viscoelastic fluid I. Rheologica Acta, 20, 111−127. doi: 10.1007/BF01513054
  • [18] Rivlin, R.S. (1982). Run-up and spin-up in a viscoelastic fluid. II.Rheologica Acta, 21, 107−111. doi: 10.1007/BF01736411
  • [19] Rivlin, R.S. (1982). Run-up and spin-up in a viscoelastic fluid. II. Rheologica Acta, 21, 213−222. doi: 10.1007/978-1-4612-2416-7_151
  • [20] Rivlin, R.S. (1983). Run-up and spin-up in a viscoelastic fluid. IV. Rheologica Acta, 22, 275−283. doi: 10.1007/BF01359127
  • [21] Narain, A., & Joseph, D.D. (1982). Linearized dynamics for step jumps of velocity and displacement of shearing flows of a simple fluid. Rheologica Acta, 21(3), 228−250. doi: 10.1007/BF01515712
  • [22] Devakar, M., & Iyengar, T.K.V. (2010). Run up flow of a couple stress fluid between parallel plates. Nonlinear Analysis: Modelling and Control, 15(1), 29−37. doi: 10.15388/na.2010.15.1.14362
  • [23] Devakar, M., & Iyengar, T.K.V. (2011). Run up flow of an incompressible micropolar fluid between parallel plates–A state space approach. Applied Mathematical Modelling, 35(4),1751−1764. doi: 10.1016/j.apm.2010.10.007
  • [24] Qadri, S.Y., & Krishna, M.V. (2013). Run-Up Flow of a Maxwell Fluid through a Parallel Plate Channel. American Journal of Computational Mathematics, 3(2013), 109−120. doi: 10.4236/ajcm.2013.34039
  • [25] Krishna, M.V., & Qadri, S.Y. (2016). Run-up Flow of OldroydB Fluid through a Parallel plate channel. IOSR Journal of Mathematics, 12(5), 1−8. doi: 10.9790/5728-1205030108
  • [26] Jibril, H.M., Jha, B.K., & Yusuf, K.L. (2019). Run-up Flow of an electrically Conducting Fluid In The Presence Of Transverse Magnetic Field in Annulus. Mathematical Association of Nigeria,44, 98−107.
  • [27] Jha, B.K., Jibril, H.M., & Yusuf, K.L. (2023). Run‐up flow of MHD fluid between parallel porous plates in the presence of transverse magnetic field. Heat Transfer, 52(3), 2651−2670. doi:10.1002/htj.22799
  • [28] Honig, G., & Hirdes, U. (1984). A method for the numerical inversion of Laplace transforms. Journal of Computational and Applied Mathematics, 10(1), 113−132. doi: 10.1016/0377-0427(84)90075-X
  • [29] Rani, D., Mishra, V., & Cattani, C. (2018). Numerical inversion of Laplace transform based on Bernstein operational matrix. Mathematical Methods in the Applied Sciences, 41(18),9231−9243. doi: 10.1002/mma.5188
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57931d7e-5736-48d6-9cd7-368b56421858
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.