PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the Microstructure and Strengthening Mechanisms of Ti-6Cu-8Nb-xCr3C2 Alloy through Vacuum Sintering Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study mixes four different powders to produce Ti-6Cu-8Nb-xCr3C2 (x = 1, 3, and 5 mass%) alloys in three different proportions. The experimental results reveal that when 5 mass% Cr3C2 was added to the Ti-6Cu-8Nb alloys, the specimen possessed optimal mechanical properties after sintering at 1275°C for 1 h. The relative density reached 98.23%, hardness was enhanced to 67.8 HRA, and the transverse rupture strength (TRS) increased to 1821.2 MPa, respectively. The EBSD results show that the added Cr3C2 in situ decomposed into TiC and NbC during the sintering process, and the generated intermetallic compounds (Ti2Cu) were evenly dispersed in the Ti matrix. Furthermore, the reduced Cr atom acts as a β-phase stabilizing element and solid-solution in the Ti matrix. Consequently, the main strengthening mechanisms of the Ti-6Cu-8Nb-xCr3C2 alloys include dispersion strengthening, solid-solution strengthening, and precipitation hardening.
Twórcy
  • National Taipei University of Technology, Department of Materials and Mineral Resources Engineering, Taipei 10608, Taiwan, ROC
autor
  • National Taipei University of Technology, Department of Materials and Mineral Resources Engineering, Taipei 10608, Taiwan, ROC
  • National Kangshan Agricultural Industrial Senior High School, Department of Auto-Mechanics, Kaohsiung 82049, Taiwan, ROC
autor
  • National Taipei University of Technology, Department of Materials and Mineral Resources Engineering, Taipei 10608, Taiwan, ROC
Bibliografia
  • [1] J.L. Hu, H.X. Li, X.Y. Wang, L. Yang, M. Chen, R.X. Wang, G.W. Qin, D.F. Chen, E.L. Zhang, Materials Science & Engineering C 115, 110921 (2020).
  • [2] K.T. Huang, S.h. Chang, H.T. Wang, Materials Transactions 58, 1581-1586 (2017).
  • [3] S.H. Chang, L.Y. Hung, T.H. Yang, Materials Chemistry and Physics 235, 121743 (2019).
  • [4] B. Callegari, J.P. Oliveira, R.S. Coelho, P.P. Brito, N. Schell, F.A. Soldera, F. Mücklich, M.I. Sadik, J.L. García, H.C. Pinto, Materials Characterization 162, 110180 (2020).
  • [5] J.P. Oliveira, B. Panton, Z. Zeng, C.M. Andrei, Y. Zhou, R.M. Miranda, F.M. Braz Fernandes, Acta Materialia 105, 9-15 (2016).
  • [6] B. Callegari, J.P. Oliveira, K. Aristizabal, R.S. Coelho, P.P. Brito, L. Wu, N. Schell, F.A. Soldera, F. Mücklich, H.C. Pinto, Materials Characterization 165, 1100400 (2020).
  • [7] J.W. Wang, S.Y. Zhang, Z.Q. Sun, H. Wang, L. Ren, K. Yang, Journal of Materials Science and Technology 35, 2336-2344 (2019).
  • [8] Y. Alshammari, F. Yang, L. Bo, Journal of the Mechanical Behavior of Biomedical Materials 95, 232-239 (2019).
  • [9] S.M. Javadhesari, S. Alipour, M.R. Akbarpour, Colloids and Surfaces B 189, 110889 (2020).
  • [10] I. Çaha, A.C. Alves, P.A.B. Kuroda, C.R. Grandini, A.M.P. Pinto, L.A. Rocha, F. Toptan, Corrosion Science 167, 108488 (2020).
  • [11] D. Kalita, Ł. Rogal, P. Bobrowski, T. Durejko, T. Czujko, A. Antolak-Dudka, E. Cesari, J. Dutkiewicz, Materials 13, 2827 (2020).
  • [12] D. Kalita, Ł. Rogal, T. Czeppe, A. Wójcik, A. Kolano-Burian, P. Zackiewicz, B. Kania, J. Dutkiewicz, Journal of Materials Engineering and Performance 29, 1445-1452 (2020).
  • [13] E. Yılmaz, A. Gökçe, F. Findik, H.O. Gulsoy, O. İyibilgin, Journal of the Mechanical Behavior of Biomedical Materials 87, 59-67 (2018).
  • [14] E. Yılmaz, A. Gökçe, F. Findik, H. Gulsoy. Journal of Alloys and Compounds 746, 301-313 (2018).
  • [15] E. Yılmaz, A. Gökçe, F. Findik, H.Ö. Gülsoy, Vacuum 142, 164-174 (2017).
  • [16] S.H. Chang, G.L. Huang, K.T. Huang, Powder Metallurgy 63, 104-115 (2020).
  • [17] K.T. Huang, S.H. Chang, P.C. Hsien, Journal of Alloys and Compounds 712, 760-767 (2017).
  • [18] M. Yi, X.Z. Zhang, G.W. Liu, B. Wang, H.C. Shao, G.J. Qi, Materials Characterization 140, 281-289 (2018).
  • [19] M. Chen, X. Xiao, X.F. Zhang, C.Y. Zhao, Materials Research Express 6, 076533 (2019).
  • [20] S.H. Chang, K.Y. Lee, K.T. Huang, T.H. Yang, Kovove Materialy-Metallic Materials 57, 317-327 (2019).
  • [21] H.X. Tian, M.Y. Zhang, Y.B. Peng, Y. Du, P. Zhou, International Journal of Refractory Metals 78, 240-246 (2019).
  • [22] S.H. Chang, C.Y. Chuang, K.T. Huang, ISIJ International 59, 1354-1361 (2019).
  • [23] Q.T. Li, Y.P. Lei, H.G. Fu, Applied Surface Science 316, 610-616 (2014).
  • [24] H.C. Hsu, S.C. Wu, T.Y. Chiang, W.F. Ho, Journal of alloys and Compounds 476, 817-825 (2009).
  • [2] Y.C. Zhang, R.B. Song, Y. Pei, E. Wen, Z.Y. Zhao, Journal of Alloys and Compounds 824, 153806 (2020).
Uwagi
1. This research is supported by the Ministry of Science and Technology of the Republic of China under grant no. Most 109-2221-E-027-062-. The authors would like to express their appreciations for ASSAB STEELS TAIWAN CO., LTD. Furthermore, thanks to Prof. H.C. Lin and Mr. C.Y. Kao of Instrumentation Center, National Taiwan University for EPMA and EBSD experiments.
2. Błąd w numeracji bibliografii.
3. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-578ff060-19d6-4de6-a43a-3d659466f481
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.