PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Robust stability of a class of uncertain fractional order linear systems with pure delay

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper considers the robust stability problem of uncertain continuous-time fractional order linear systems with pure delay in the following two cases: a) the state matrix is a linear convex combination of two known constant matrices, b) the state matrix is an interval matrix. It is shown that the system is robustly stable if and only if all the eigenvalues of the state matrix multiplied by delay in power equal to fractional order are located in the open stability region in the complex plane. Parametric description of boundary of this region is derived. In the case a) the necessary and sufficient computational condition for robust stability is established. This condition is given in terms of eigenvalue-loci of the state matrix, fractional order and time delay. In the case b) the method for determining the rectangle with sides parallel to the axes of the complex plane in which all the eigenvalues of interval matrix are located is given and the sufficient condition for robust stability is proposed. This condition is satisfied if the rectangle multiplied by delay in power equal to fractional order lie in the stability region. The considerations are illustrated by numerical examples.
Rocznik
Strony
177--187
Opis fizyczny
Bibliogr. 16 poz., rys., wykr., wzory
Twórcy
  • Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Bialystok, Poland
Bibliografia
  • [1] M. Busłowicz: Asymptotic stability of dynamical interval systems with pure delay. Scientific J. Bialystok University of Technology, Technical Sciences, Electricity, 83(11), (1992), 61-77.
  • [2] M. Busłowicz: Stability of linear continuous-time fractional order systems with delays of the retarded type. Bull. Pol. Acad. Sci. Techn., 56(4), (2008), 319-324.
  • [3] M. Busłowicz: Stability conditions of continuous-time fractional order linear systems with pure delay. Submitted for publication in Bull. Pol. Acad. Sci. Techn., (2014).
  • [4] M. Busłowicz and A. Ruszewski: Robust stability check of fractional discretetime linear systems with interval uncertainties. In: K. J. Latawiec et al. (Eds.): Advances in Modeling and Control of Non-integer Order Systems (Lecture Notes in Electrical Engineering, 320), Springer, 2015, 199-208.
  • [5] C. A. Desoer and M. Vidyasagar: Feedback Systems: Input-output Properties. Acad. Press, New York, 1975.
  • [6] A. R. Fioravanti, C. Bonnet, H. Özbay and S. Niculescu: A numerical method for stability windows and unstable root-locus calculation for linear fractional time-delay systems. Automatica, 48(11), (2012), 2824-2830.
  • [7] T. Kaczorek: Selected Problems of Fractional Systems Theory. Springer, Berlin, 2011.
  • [8] T. Kaczorek: Determination of positive realizations with reduced numbers of delays or without delays for discrete-time linear systems. Archives of Control Sciences, 22(4), (2012), 371-384.
  • [9] T. Kaczorek and Ł. Sajewski: Realization Problem for Positive and Fractional Systems. Springer, Heidelberg, 2014.
  • [10] T. Kaczorek and K. Rogowski: Fractional Linear Systems and Electrical Circuits. Oficyna Wydawnicza Politechniki Białostockiej, Białystok, 2014.
  • [11] E. Kaslik and S. Sivasundarm: Analytical and numerical methods for the stability analysis of linear fractional delay differential equations. J. of Computational and Applied Mathematics, 236(16), (2012), 4027-4041.
  • [12] H. Li, S. M. Zhong and H. B. Li: Stability analysis of fractional order systems with time delay. Int. J. of Mathematical, Computational Science and Engineering, 8(4), (2014), 400-403.
  • [13] Y. Luo and Y.-Q. Chen: Fractional Order Motion Controls. John Wiley & Sons Ltd, Chichester, 2013.
  • [14] A. Mesbahi and M. Haeri: Stability of linear time invariant fractional delay systems of retarded type in the space of delay parameters. Automatica, 49(5), (2013), 1287-1294.
  • [15] C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue and V. Feliu-Batlle: Fractional-order Systems and Controls Fundamentals and Applications, Springer, London, 2010.
  • [16] A. Ruszewski: Practical stability and asymptotic stability of interval fractional discrete-time linear state-space system. In: R. Szewczyk et al. (Eds.): Recent Advances in Automation, Robotics and Measuring Techniques (Advances in Intelligent Systems and Computing, 267) Springer, 2014, 217-227.
Uwagi
EN
The work was supported by the Ministry of Science and High Education of Poland under the grant no. S/WE/1/2011
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5780334c-c8b0-4ca4-a7a4-1cae9fb08a64
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.