PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Structure-property relationships and corrosion behavior of laser‑welded X‑70/UNS S32750 dissimilar joint

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research aims to study the microstructure characteristics, mechanical properties, and corrosion behaviors of the dissimilar autogenous laser beam welded joint of pipeline steel (X-70) and super duplex stainless steel (sDSS 2507). Pipelines for the transmission of oil and gas and risers for offshore oil and gas drilling require this dissimilar joint. A dissimilar joint must maintain its properties and be defect-free under such challenging operating conditions. The microstructure of the interface, weld zone and heat-affected zone (HAZ) were all investigated thoroughly using optical microscopy (OM) and scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS). This dissimilar joint had signifcant microstructure anomalies in the weld and interfaces. Microstructure inhomogeneity’s effect on welded joint mechanical properties, including microhardness, tensile and impact strength, was also studied. The linear potentiodynamic polarisation test in neutral 3.5 wt.% NaCl solution was used to study this weldment’s corrosion behavior. The corroded surfaces were examined using an OM and SEM for the surface morphology investigation of corroded specimens. The macro-optical investigation has revealed full penetrations in the weld without any inclusions or porosities. The interface between the sDSS 2507 weld zone and the X-70 coarse grain heat-affected zone (CGHAZ) indicated a peak hardness of 418 Hv0.5. With an average of 345 Hv0.5, the WZ’s hardness variation was reported to be in the 298-420 Hv0.5 range. The hardness of the X-70/sDSS 2507 weld interface was assessed to be greater than that of the other region of weldments. An untempered martensitic region in WM and the CGHAZ of X-70, and the presence of M-A components are credited with the increase in hardness. The welded joint achieved reasonably excellent strength and ductility and met the marine and offshore standards requirements. The base metals and weldment for X-70 and sDSS 2507 have respective ultimate tensile strengths (UTS) of 610±6 MPa, 995±8 MPa, and 675±10 MPa. The tensile findings revealed that the fracture location for weldment was evident in the X-70 base metal, ensuring that the weld metal was of adequate strength for the laser-weld joints. It was observed that the weldment’s WM had the lowest impact strength. The Charpy impact toughness of the weld metal, however, was higher than both the ASME standard (>41 J) and the EN 1599:1997 standards (>47 J). The sDSS 2507 BM (310±4 J) clearly outperforms the weld zones (185±3 J) and X-70 base metal (295±2 J) in terms of impact strength. The electrochemical corrosion test shows the corrosion potential, and the weld zone's corrosion rate is between sDSS 25,070 (- 260±1.3 mV, 0187±0.002 mm/year) and X-70 base metal (- 454±1.8 mV, 0.321±0.017 mm/year). Additionally, the surface morphologies and the electrochemical measurements matched significantly.
Rocznik
Strony
art. no. e81, 2023
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
  • Mechanical Engineering Department, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
  • Mechanical Engineering Department, National Institute of Technology, Patna 800005, India
  • Mechanical Engineering Department, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
  • Mechanical Engineering Department, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
Bibliografia
  • 1. Lippold JC. Welding metallurgy and weldability. Hoboken, NJ: John Wiley & Sons Inc; 2014. https://doi.org/10.1002/97811 18960332.
  • 2. Andersson J. Welding metallurgy and weldability of superalloys. Metals (Basel). 2020. https://doi.org/10.3390/met10010143.
  • 3. Lippold JC, Kotecki DJ. Welding metallurgy and weldability of stainless steels. Wiley; 2005.
  • 4. Khan WN, Chhibber R. Effect of filler metal on solidification, microstructure and mechanical properties of dissimilar super duplex/pipeline steel GTA weld. Mater Sci Eng. 2021;803:140476. https://doi.org/10.1016/j.msea.2020.140476.
  • 5. Khan WN, Chhibber R. Experimental investigation on dissimilar weld between super duplex stainless steel 2507 and API X70 pipeline steel. Proc Inst Mech Eng Part L J Mater Design Appl. 2021. https://doi.org/10.1177/14644207211013056.
  • 6. Khan WN, Mahajan S, Chhibber R. Investigations on reformed austenite in the microstructure of dissimilar super duplex/pipeline steel weld. Mater Lett. 2021;285:129109. https://doi.org/10. 1016/j.matlet.2020.129109.
  • 7. Shamanian M, Kangazian J, Szpunar JA. Insights into the microstructure evolution and crystallographic texture of API X-65 steel/ UNS S32750 stainless steel dissimilar welds by EBSD analysis. Weld World. 2021;65:973-86. https://doi.org/10.1007/S40194-020-01062-3/TABLES/3.
  • 8. Rahmani M, Eghlimi A, Shamanian M. Evaluation of microstructure and mechanical properties in dissimilar austenitic/super duplex stainless steel joint. J Mater Eng Perform. 2014;23:3745-53. https://doi.org/10.1007/s11665-014-1136-z.
  • 9. Graudenz M, Baur M. Applications of laser welding in the automotive industry. In: Handbook of laser welding technologies. Elsevier; 2013. p. 555-74.
  • 10. Yang J, Oliveira JP, Li Y, Tan C, Gao C, Zhao Y, Yu Z. Laser techniques for dissimilar joining of aluminum alloys to steels: a critical review. J Mater Process Technol. 2022;301:117443. https://doi.org/10.1016/j.jmatprotec.2021.117443.
  • 11. Ahmad GN, Raza MS, Singh NK, Muvvala G. Investigating the effect of process parameters on weld pool thermal history and mechanical properties of laser welded Inconel 625 and Duplex stainless steel 2205 dissimilar welds. Optik (Stuttg). 2021;248:168134. https://doi.org/10.1016/J.IJLEO.2021.168134.
  • 12. Köse C. Characterization of weld seam surface and corrosion behavior of laser-beam-welded AISI 2205 duplex stainless steel in simulated body fluid. J Mater Sci. 2020;55:17232-54. https:// doi.org/10.1007/S10853-020-05326-7.
  • 13. Wang G, Wang J, Yin L, Hu H, Yao Z. Quantitative correlation between thermal cycling and the microstructures of X100 pipeline steel laser-welded joints. Materials. 2020;13:121. https://doi.org/ 10.3390/MA13010121.
  • 14. Yang H, Chen J, Huda N, Gerlich AP. Effect of beam wobbling on microstructure and hardness during laser welding of X70 pipeline steel. Sci Technol Weld Join. 2022;27:326-38. https://doi.org/10.1080/13621718.2022.2053395.
  • 15. Maurya AK, Pandey C, Chhibber R. Effect of filler metal composition on microstructural and mechanical characterization of dissimilar welded joint of nitronic steel and super duplex stainless steel. Archiv Civil Mech Eng. 2022;22:1-28. https://doi.org/10. 1007/S43452-022-00413-9.
  • 16. Maurya AK, Pandey C, Chhibber R. Influence of heat input on weld integrity of weldments of two dissimilar steels. Mater Manuf Processes. 2022. https://doi.org/10.1080/10426914.2022.20758 89.
  • 17. Maurya AK, Pandey C, Chhibber R. Dissimilar welding of duplex stainless steel with Ni alloys: a review. Int J Press Vessels Piping. 2021. https://doi.org/10.1016/j.ijpvp.2021.104439.
  • 18. DevendranathRamkumar K, Kumar PSG, Sai Radhakrishna V, Kothari K, Sridhar R, Arivazhagan N, Kuppan P. Studies on microstructure and mechanical properties of keyhole mode Nd:YAG laser welded Inconel 625 and duplex stainless steel, SAF 2205. J Mater Res. 2015;30:3288-98. https://doi.org/10.1557/ JMR.2015.276.
  • 19. Sirohi S, Gupta A, Pandey C, Vidyarthy RS, Guguloth K, Natu H. Investigation of the microstructure and mechanical properties of the laser welded joint of P22 and P91 steel. Opt Laser Technol. 2022;147:107610. https://doi.org/10.1016/J.OPTLASTEC.2021. 107610.
  • 20. Köse C, Topal C. Effect of heat input and post-weld heat treatment on surface, texture, microstructure, and mechanical properties of dissimilar laser beam welded AISI 2507 super duplex to AISI 904L super austenitic stainless steels. J Manuf Process. 2022;73:861-94. https://doi.org/10.1016/J.JMAPRO.2021.11.040.
  • 21. das Nevesa MDM, Lottob A, Berrettac JR, de Rossid W, Júniord NDV. Microstructure development in Nd:YAG laser welding of AISI 304 and Inconel 600. Weld Int. 2010;24:104-13. https://doi. Org/10.1080/09507110903568877.
  • 22. Liu X, Pang M, Zhang Z, Ning W, Zheng CY. Characteristics of deep penetration laser welding of dissimilar metal Ni-based cast superalloy K418 and alloy steel 42CrMo. Opt Lasers Eng. 2007;45:929-34.
  • 23. Berretta JR, de Rossi W, Das Neves MDM, Alves de Almeida I, Vieira ND Jr. Pulsed Nd:YAG laser welding of AISI 304 to AISI 420 stainless steels. Opt Lasers Eng. 2007;45:960-6. https://doi. org/10.1016/J.OPTLASENG.2007.02.001.
  • 24. Baghjari SH, AkbariMousavi SAA. Experimental investigation on dissimilar pulsed Nd:YAG laser welding of AISI 420 stainless steel to Kovar alloy. Mater Des. 2014;57:128-34. https://doi.org/ 10.1016/J.MATDES.2013.12.050.
  • 25. Devendranath RK, Sidharth D, Phani PP, Rajendran R, Narayanan GMKS. Microstructure and properties of inconel 718 and AISI 416 laser welded joints. J Mater Process Technol. 2019;266:52-62. https://doi.org/10.1016/J.JMATPROTEC.2018.10.039.
  • 26. Pańcikiewicz K, Świerczyńska A, Hućko P, Tumidajewicz M. Laser dissimilar welding of AISI 430F and AISI 304 stainless steels. Materials. 2020;13:1-15. https://doi.org/10.3390/MA132 04540.
  • 27. Dak G, Sirohi S, Pandey C. Study on microstructure and mechanical behavior relationship for laser-welded dissimilar joint of P92 martensitic and 304L austenitic steel. Int J Press Vessel Piping. 2022;196:104629. https://doi.org/10.1016/J.IJPVP.2022.104629.
  • 28. Kumar A, Pandey C. Autogenous laser-welded dissimilar joint of ferritic/martensitic P92 steel and Inconel 617 alloy: mechanism, microstructure, and mechanical properties. Archiv Civil Mech Eng. 2022. https://doi.org/10.1007/S43452-021-00365-6.
  • 29. Mendoza BI, Maldonado ZC, Albiter HA, Robles PE. Dissimilar welding of superduplex stainless steel/HSLA steel for offshore applications joined by GTAW. Engineering. 2010;02:520-8. https://doi.org/10.4236/eng.2010.27069.
  • 30. Wang J, Lu MX, Zhang L, Chang W, Xu LN, Hu LH. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel. Int J Miner Metall Mater. 2012;2012(19):518-24. https://doi.org/10. 1007/S12613-012-0589-Z.
  • 31. Wang X, Zhang L, Kuang X, Lu M. Microstructure and galvanic corrosion of dissimilar weldment between duplex stainless steel UNS 31803 and X80 Steel. Proc Int Conf Offshore Mech Arctic Eng OMAE. 2010;6:295-9. https://doi.org/10.1115/OMAE2009-80203.
  • 32. Sadeghian M, Shamanian M, Shafyei A. Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel. Mater Des. 2014;60:678-84. https://doi.org/10.1016/j.matdes.2014.03.057.
  • 33. Moustafa EB, Elsheikh A. Predicting characteristics of dissimilar laser welded polymeric joints using a multi-layer perceptrons model coupled with Archimedes optimizer. Polymers (Basel). 2023;15:233. https://doi.org/10.3390/polym15010233.
  • 34. Elsheikh AH, Shehabeldeen TA, Zhou J, Showaib E, AbdElaziz M. Prediction of laser cutting parameters for polymethylmeth-acrylate sheets using random vector functional link network integrated with equilibrium optimizer. J Intell Manuf. 2021;32:1377-88. https://doi.org/10.1007/S10845-020-01617-7/TABLES/4.
  • 35. Zhou H, Wu C, Tang D, Shi X, Xue Y, Huang Q, Zhang J, Elsheikh AH, Ibrahim AMM. Tribological performance of gradient ag-multilayer graphene/TC4 alloy self-lubricating composites prepared by laser additive manufacturing. Tribol Transac. 2021;64:819-29. https://doi.org/10.1080/10402004.2021.1922789.
  • 36. Elsheikh AH, Deng W, Showaib EA. Improving laser cutting quality of polymethylmethacrylate sheet: experimental investigation and optimization. J Mater Res Technol. 2020;9:1325-39. https://doi.org/10.1016/j.jmrt.2019.11.059.
  • 37. Elsheikh AH, Muthuramalingam T, AbdElaziz M, Ibrahim AMM, Showaib EA. Minimization of fume emissions in laser cutting of polyvinyl chloride sheets using genetic algorithm. Int J Environ Sci Technol. 2022;19:6331-44. https://doi.org/10.1007/S13762-021-03566-X/FIGURES/10.
  • 38. Payares-Asprino C. Prediction of mechanical properties as a function of welding variables in robotic gas metal arc welding of duplex stainless steels SAF 2205 welds through artifcial neural networks. Adv Mater Sci. 2021;21:75-90. https://doi.org/10.2478/ adms-2021-0019.
  • 39. Astm G. G 61-86: standard test method for conducting cyclic potentiodynamic polarization measurements for localized corrosion susceptibility of iron nickel cobalt-base alloys. Ann Book ASTM Stand. 2001;3:223-7.
  • 40. Cotrim-Ferreira FA, Quaglio CL, Peralta RPV, Carvalho PEG, Siqueira DF. ASTM E3-01: standard guide for preparation of metallographic specimens. Braz Oral Res SciELO Brasil. 2010;24:438-42.
  • 41. Practice S. Standard practice for microetching metals and alloys. ASTM E-407. 2016;07:1-22. https://doi.org/10.1520/E0407-07R15E01.2.
  • 42. ASTM E8. ASTM E8/E8M standard test methods for tension testing of metallic materials 1. Ann Book ASTM Stand. 2010;4:1-27. https://doi.org/10.1520/E0008.
  • 43. ASTM American Society for Testing and Materials. ASTM E 23-12c, Standard test methods for notched bar impact testing of metallic materials. ASTM Int. 2012. https://doi.org/10.1520/ E0023-18.
  • 44. ASTM E92-17. ASTM 2017 standard standard test methods for Vickers hardness and knoop hardness of metallic materials. West Conshohocken (PA): ASTM International; 2017. p. 1-27.
  • 45. Maurya AK, Chhibber R, Pandey C. Heat input efect on dissimilar super duplex stainless steel (UNS S32750) and nitronic steel (N 50) gas tungsten arc weld: mechanism microstructure, and mechanical properties. J Mater Eng Perform. 2022. https:// doi.org/10.1007/s11665-022-07471-3.
  • 46. Sieurin H, Sandström R. Austenite reformation in the heat-affected zone of duplex stainless steel 2205. Mater Sci Eng A. 2006;418:250-6. https://doi.org/10.1016/J.MSEA.2005.11.025.
  • 47. Ahmad GN, Raza MS, Singh NK, Kumar H. Experimental investigation on Ytterbium fber laser butt welding of Inconel 625 and duplex stainless steel 2205 thin sheets. Optics Laser Technol. 2020;126:106117. https://doi.org/10.1016/j.optlastec.2020. 106117.
  • 48. Ali A, Bhadeshia HKDH. Microstructure of high strength steel refined with intragranularly nucleated Widmanstätten ferrite. Mater Sci Technol. 1991;7:895-903. https://doi.org/10.1179/ MST.1991.7.10.895.
  • 49. Bhadeshia H, Svensson L. Modelling the evolution of microstructure in steel weld metal. Math Model Weld Phenomena. 1993;1:109-82.
  • 50. Qi K, Li R, Wang G, Li G, Liu B, Wu M. Microstructure and corrosion properties of laser-welded SAF 2507 super duplex stainless steel joints. J Mater Eng Perform. 2019;28:287-95. https://doi.org/10.1007/S11665-018-3833-5.
  • 51. Ramirez AJ, Lippold JC, Brandi SD. The relationship between chromium nitride and secondary austenite precipitation in duplex stainless steels. Metall Mater Trans A Phys Metall Mater Sci. 2003;34A:1575-97. https://doi.org/10.1007/S11661-003-0304-9.
  • 52. Sun Z, Kuo M, Annergren I. Effect of dual torch technique on duplex stainless steel welds. Mater Sci Eng A. 2003;356:274-82.
  • 53. Taban E, Kaluc E. Welding behaviour of duplex and superduplex stainless steels using laser and plasma ARC welding processes. Weld World. 2011;55:48-57. https://doi.org/10.1007/BF03321307.
  • 54. Brayshaw WJ, Roy MJ, Sun T, Akrivos V, Sherry AH. Iterative mesh-based hardness mapping. Sci Technol Weld Join. 2016;22:404-11. https://doi.org/10.1080/13621718.2016.1251713.
  • 55. Bing Guo Y, Li C, Chang Liu Y, Ming Yu L, Qing Ma Z, Xi Liu C, Jun Li H. Effect of microstructure variation on the corrosion behavior of high-strength low-alloy steel in 3.5wt% NaCl solution. Int J Miner Metall Mater. 2015;22:604-12. https://doi.org/10.1007/S12613-015-1113-Z.
  • 56. Devendranath RK, Dagur AH, Kartha AA, Subodh MA, Vishnu C, Arun D, Vijay Kumar MG, Abraham WS, Chatterjee A, Abraham J, Abraham J. Microstructure, mechanical properties and biocorrosion behavior of dissimilar welds of AISI 904L and UNS S32750. J Manuf Process. 2017;30:27-40. https://doi.org/ 10.1016/J.JMAPRO.2017.09.001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57792ee6-f3bb-4948-9eb1-69100cd80189
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.