PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Exergetic Analysis For A Complete Node Of Fluidised-Bed Drying Of Poppy Seeds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents an experimental-theoretical analysis of fluidised-bed drying of poppy seeds directed on minimisation of energy. The analysis was performed for a complete drying node incorporating a heat exchanger and a fan. Two complementary factors were used in the exergetic evaluation: exergy efficiency and unit consumption of exergy. An analysis of drying in stationary bed was carried out for comparison purposes. Results of the exergetic analysis can become a basis for innovative works focused on decreasing energy consumption of a technological node being analysed, e.g. by the use of recirculation of fluidising-drying medium.
Rocznik
Strony
437--447
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Cracow University of Technology, Department of Chemical and Process Engineering C-3, Warszawska 24, 31-155 Kraków, Poland
  • Cracow University of Technology, Department of Chemical and Process Engineering C-3, Warszawska 24, 31-155 Kraków, Poland
Bibliografia
  • 1. Aghbashlo M., Mobli H., Rafiee S., Madadlou A., 2013. A review on exergy analysis of drying processes and systems. Renewable Sustainable Energy Rev., 22, 1–22. DOI: 10.1016/j.rser.2013.01.015.
  • 2. kpinar E. K., Dincer I., 2005. Moisture transfer models for slabs drying. Int. Commun. Heat Mass Transfer, 32, 80–93, DOI: 10.1016/j.icheatmasstransfer.2004.04.037.
  • 3. Assari M.R., Basirat Tabrizi H., Najafpour E., 2013. Energy and exergy analysis of fluidized bed dryer based on two-fluid modeling. Int. J. Therm. Sci., 64, 213–219. DOI: 10.1016/j.ijthermalsci.2012.08.020.
  • 4. Bes T., 1962. Egzergia w procesach ogrzewania, klimatyzacji i suszenia. Energetyka Przemysłowa, 10 388–392.
  • 5. Ciesielczyk W., 2009. Novel gas distributor for fluidized bed drying of biomass. Drying Technol., 27, 1309–1315. DOI: 10.1080/073739309033833612.
  • 6. Colak N., Erbay Z., Hepbasli A., 2013. Performance assessment and optimization of industrial pasta drying. Int. J. Energy Res., 37, 913–922. DOI: 10.1002/er.2895.
  • 7. Coskun C., Bayraktar M., Oktay Z., Dincer I., 2009. Energy and exergy analyses of an industrial wood chips drying process. Int. J. Low-Carbon Technol., 4, 224–229. DOI: 10.1093/ijlct/ctp024.
  • 8. Erbay Z., Icier F., 2009. Optimization of hot air drying of olive leaves using response surface methodology. J. Food Eng., 91, 533–541. DOI: 10.1016/j.jfoodeng.2008.10.004.
  • 9. Fortes M., 2004. Second-law modeling of deep bed drying process with a simulation study of wheat air-recirculated fluidized-bed drying. Drying 2004, Proceedings of the 14th International Drying Symposium IDS 2004, 18–32.
  • 10. Fortes M., Ferreira W. R., 2004. Second-law analysis of drying – Modeling and simulation of fluidized bed grain drying. Drying 2004, Proceedings of the 14th International Drying Symposium IDS 2004, 301–308.
  • 11. Geldart D., 1973. Types of gas fluidization. Powder Technol., 7, 285–292. DOI: 10.1016/0032-5910(73)80037-3.
  • 12. Icier F., Colak N., Erbay Z., Kuzgunkaya, E. H., Hepbasli, A., 2010. A comparative study on exergetic performance assessment for drying of broccoli florets in three different drying systems. Drying Technol., 28, 193–204. DOI: 10.1080/07373930903524017.
  • 13. Inaba H, Husain S, Horibe A., Haruki N., 2007. Heat and mass transfer analysis of fluidized bed grain drying. Memoirs of the Faculty of Engineering, Okayama University, 41, 52–62.
  • 14. Nazghelichi T., Kianmehr M. H., Aghbashlo M. 2010. Thermodynamic analysis of fluidized bed drying of carrot cubes. Energy, 35, 4679–4684. DOI: 10.1016/j.energy.2010.09.036.
  • 15. Ranjbaran M., Zare D., 2013. Simulation of energetic- and exergetic performance of microwave-assisted fluidized bed drying of soybeans. Energy, 59, 484–493. DOI: 10.1016/j.energy.2013.06.057.
  • 16. Ren C.Q., Tang G.F., Li N.P., Zhang G.F., Yang J., 2001. Analysis of exergy of moist air and energy saving potential in HVAC by evaporative cooling energy recovery. Int. J. Archit. Sci., 2 (4), 113–117.
  • 17. Skoneczna-Łuczków J., Ciesielczyk W., Kamińska A., 2014. Effect of fluidization number on exergy evaluation in biomass drying process. Inz. Ap. Chem., 53, 2, 119–121 (in Polish).
  • 18. Strumiłło C., 1983. Podstawy teorii i techniki suszenia. Wydawnictwo Naukowo-Techniczne, Warszawa.
  • 19. Strumiłło C., 2006. Perspectives on developments in drying. Drying Technol., 24, 1059–1068. DOI: 10.1080/07373930600778056.
  • 20. Syahrul S., Dincer I., Hamdullahpur F., 2003. Thermodynamic modeling of fluidized bed drying of moist particles. Int. J. Therm. Sci., 42, 691–701. DOI: 10.1016/S1290-072903.00035-8.
  • 21. Syahrul S., Hamdullahpur F., Dincer I., 2002. Energy analysis in fluidized-bed drying of large wet particles. Int. J. Energy Res., 26, 507–525. DOI: 10.1002/er.799.
  • 22. Szargut J., Petela R., 1965. Egzergia. Wydawnictwo Naukowo-Techniczne, Warszawa.
  • 23. Witrowa-Rajchert D., 2009. Ekspertyza. Nowe trendy w suszeniu żywności. Agengpol. Available at: www.agengpol.pl/LinkClick.aspx?fileticket=wq81Lx050Uc%3D&tabid=144.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5777275b-275b-45a8-a8f2-3113c9e888c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.