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Preventive maintenance strategy optimizing model under 
two-dimensional warranty policy

Model optymalizacji strategii konserwacji zapobiegawczej 
w warunkach dwuwymiarowej polityki gwarancyjnej

An effective warranty servicing strategy should be made considering both warranty cost and product availability. Based on the 
two-dimensional free repair warranty, a strategy combining the imperfect preventive maintenance and minimal repair is proposed 
where the imperfect preventive maintenances are implemented in a special subregion of the warranty and all other failures are 
repaired minimally. By modeling the warranty cost and product availability, we derive the optimum warranty servicing strategy 
and corresponding parameters to minimize the cost-effective of unit time. Finally, we provide a numerical illustration and a com-
parison with some other strategies.

Keywords:	 two-dimensional warranty, imperfect preventive maintenance, availability.

Efektywna strategia obsługi gwarancyjnej powinna uwzględniać zarówno koszty gwarancji jak i dyspozycyjność produktu. W 
oparciu o pojęcie dwuwymiarowej gwarancji bezpłatnej naprawy, zaproponowano strategię łączącą niepełną konserwację zapo-
biegawczą z naprawą minimalną, gdzie działania obsługowe w ramach niepełnej konserwacji zapobiegawczej przeprowadza się 
w ramach specjalnego podobszaru gwarancji, a wszelkie inne uszkodzenia naprawia się w ramach naprawy minimalnej. Modelu-
jąc koszty naprawy oraz dyspozycyjność produktu, wyprowadzono optymalną strategię obsługi gwarancyjnej oraz odpowiadające 
jej parametry w celu zminimalizowania kosztów na jednostkę czasu. Na koniec, proponowane rozwiązanie zilustrowano na przy-
kładzie numerycznym oraz porównano z innymi strategiami.

Słowa kluczowe:	 gwarancja dwuwymiarowa, niepełna konserwacja zapobiegawcza, dyspozycyjność.

1. Introduction

A warranty servicing strategy has significant impact on manu-
facturer’s warranty cost and the product availability. As requirement 
of consumers for the quality of products is increasing, product avail-
ability will obviously affect consumer satisfaction and the reputation 
of manufacturer and then the product sales, so reasonable warranty 
strategy should be made considering both warranty cost and product 
availability to meet the interests of both sides.

Preventive maintenance could reduce the product failure rate so 
that reduce the warranty cost and improve availability effectively. 
With the updating of warranty policy, warranty cost model under 
the preventive maintenance is developed in many studies. Chun [2] 
introduced the periodic preventive maintenance in prior time when 
he studied product warranty. This model is generalized by Jack and 
Dagpunar [7], where the product can be repaired “as good as new” 
after preventive maintenance, and preventive maintenance period is 
variable. Yeh and Lo [12] extends the model with making the preven-
tive maintenance degree reach some specific level to minimize the 
warranty cost. The study [4] derives an optimal preventive warranty 
strategy to minimize the product’s long term expected cost by balanc-
ing the saving and added cost by preventive maintenance during war-
ranty period, and obtains the optimal preventive maintenance period 
and puts forward effective algorithm. The above studies introduce 
preventive maintenance into the one-dimensional warranty policy and 
are aimed at getting the lowest warranty cost without considering the 

product availability. In addition, preventive maintenance is not always 
effectively, as the new product just begins to operate, unreasonable 
preventive maintenance often leads to a high warranty cost and low 
availability since the failure rate is relatively low at the beginning of 
exploitation.

A summary of the different warranty policies is given in [1]. They 
can be divided into one-dimensional and two-dimensional policies 
broadly. For the study of optimizing models under two-dimensional 
warranty, Iskandar and Murthy [6] proposed a repair-replacement 
strategy with two subregions to optimize the warranty cost, where 
minimal repair and replacement strategy is adopted in different su-
bregions. In [5], the strategy in [6] is improved to a new repair-re-
placement strategy with three subregions, where the first failure in the 
middle subregion Ω2 will be handled by replacement, and the remain-
ing failures are all repaired minimally. The strategy in [5] is improved 
to an imperfect repair strategy by Yun and Kang [13], where the first 
repair in the middle subregion is imperfect, and all remaining repairs 
are minimal, and then, this strategy is generalized to an n-subregion 
strategy by Varnosafaderani and Chukova [10, 11], where the first 
repair in each intermediate subregions (Ω2-Ωn-1) are imperfect, and 
other failures are repaired minimally. The above studies mentioned 
are aimed at optimizing the warranty cost without considering the pre-
ventive maintenance and product availability, but the availability, like 
warranty cost, is also an important factor to influence the warranty 
strategy because it is related to consumer satisfaction, especially for 
some specific customer as army.
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In view of the above analysis, this paper introduces the minimal- 
imperfect preventive maintenance combination strategy considering 
a product with a two-dimensional free repair warranty and presents 
a mathematical optimization model to derive the optimal preventive 
maintenance strategy in the warranty period with respect to the war-
ranty cost and product availability.

2. Warranty servicing strategy

The product is sold with a two-dimensional free repair warranty. 
As mentioned in earlier research, the two-dimensional warranty is 
characterized by a region Ω in a two-dimensional plane and the repair 
is free to consumer in this region [6].

In this paper, the case where warranty region Ω is a rectangle with 
the age limit K and usage limit L is studied, and the warranty expires 
when either limit is exceeded. The minimal – imperfect preventive 
maintenance combination strategy is introduced to deal with the fail-
ure in warranty region. The warranty servicing strategy is implement-
ed as follows.

Firstly, as in [6], the warranty region Ω [(0, K)×(0, L)] is divided 
into two disjoint subregions Ω1 and Ω2, as shown in Fig. 1. The shapes 
of the subregions are governed by a rate parameter r (r≥0), such that

	 1
1 2

1
,   L Lr r

K K
= = .	

Then, given the subregions Ω1 and Ω2, the minimal - imperfect 
preventive maintenance combination strategy is as follows:

all repairs in Ω1 are minimal with cost Cf and duration (a)	 Tf.
The first imperfect preventive maintenance is taken at the time (b)	
point the warranty over the subregion Ω1 expires, and periodic 
preventive maintenance (PM) is implemented in Ω2 with cost Cp, 
duration Tp and period T, and the remaining failures are rectified 
by minimal maintenance.
The warranty policy introduced above is of certain practical sig-

nificance. In the subregion Ω1, the failure rate is relatively low since 
the product just begins to operate, so minimal repair is effective. PM 
strategy is adopted in Ω2 since the failure rate rises with the increase 
of the product’s age/usage, and the proper PM action can reduce the 
shutdown loss and maintenance cost caused by failure. In practice, 
having a combination of the minimal repair and PM often leads to 
lower warranty servicing cost and higher product availability.

3. Modeling product failure and imperfect mainte-
nance

Two different approaches have been used to model the product 
failure process for the analysis of two-dimensional warranty policies. 
They are one-dimensional and two-dimensional approaches, and the 

detailed description has been introduced in related literature [8]. In 
this study, the failure process under two dimensions is modeled using 
the one-dimensional approach.

In the one–dimensional approach, product usage is considered as 
a function of the age of the product. Assuming that the relationship is 
linear with a nonnegative coefficient R, such that 

	 ( ) ( )U t RT t=
,

where U(t) and T(t) are the usage and age of the product at time t, 
and the usage rate R is a nonnegative random variable with a known 
distribution function G(r). When no product failure occurs before t or 
all the failures are repaired, then T(t) = t. However, if the product is 
not repairable and the failure product must be replaced by a new one, 
then T(t) < t. For details, see [6].

Product failures are modeled by a stochastic process with an in-
tensity function dependent on age and usage of the product. Given a 
usage rate r, the intensity function will have a single variable t since 
the usage can be conveyed by age, such that

	
λ ϕt r T t U t( ) = ( ) ( )( ), .

With the simplest being a polynomial of order one [6], the follow-
ing conditional intensity function form is given by:

	 λ θ θ θ θt r r T t U t( ) = + + ( ) + ( )0 1 2 3 ,	 (1)

and a polynomial of order two is given in [5], as follows:

	 λ θ θ θ θt r r T t T t U t( ) = + + ( ) + ( ) ( )0 1 2
2

3 ,	 (2)

with the parameters θi>0.
To model the imperfect preventive maintenance effect on the 

failure rate of the product, a modification of the “virtual age” model 
proposed in [3] is introduced, where the effect of an imperfect main-
tenance is expressed by a reduction of the system virtual age, that is, 
after preventive maintenance, the failure rate decreases to a former 
level as the age of the product reduces, and the corresponding former 
age is the “virtual age” (or effective age).

Given the minimal - imperfect preventive maintenance combina-
tion strategy, we introduce the improvement factor α, and the virtual 
age reduction depends on α. Based on the model in [3], the failure rate 
of the product is defined by its virtual age (or effective age), and when 
an imperfect maintenance is performed on the product, its virtual age 
will be reduced. Assume that the j-th preventive maintenance inter-
val is j∆ , and after the j-th imperfect preventive maintenance with 
improvement factor αj, the virtual age reduces by ( )j jTα ∆ . So the 
virtual age after the j-th preventive maintenance can be given by:

	 v t T t Tj i
i

j
i( ) ( ) ( )= −

=
∑α

1
∆ .	 (3)

Since the product in this study is repairable and all failures are re-
paired minimally, then T(t) = t, and the eq.(3) can be transformed to:

	 v t tj i
i

j
i( ) = −

=
∑α

1
∆ ,	 (4)

Fig. 1. Subregions of the warranty region
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so the conditional intensity function after the j-th preventive mainte-
nance becomes:

	 λ λ λ α α αj j i
i

j
i

i
t r v t r t X T r with T( ) = ( ) = − −









 =

= =
∑ ∑( ) 1

2 2

1
0   , (5)

where λ( )• r  is the initial intensity function of the process and X 
is the time point that the warranty over the subregion Ω1 will expire 
(see Fig.1). α i∈[ , ]0 1  represents the degree of a repair (improvement 
factors), which is the level of the applied effort to improve the state of 
product. Based on the model, α = 0 means that the preventive mainte-
nance is minimal and PM action has no significant effect on the state 
of the product. Besides, α = 1 means that the repair is perfect and the 
state of product is restored to ‘‘as good as new’’ state. The conditional 
intensity function of the process after an imperfect maintenance is 
between the conditional intensities after a minimal repair and a perfect 
repair.

4. Two-dimensional warranty cost and availability mod-
els

Let ECΩ ϖ( )  and EAΩ ϖ( )  denote the expected warranty cost 
and availability over the warranty region Ω respectively, where ϖ  
represents the parameters of the minimal – imperfect preventive 

maintenance combination strategy and is given by ϖ = ( )K T r1 1, , . 
We assume that 1 pK T K+ < . Each whole preventive warranty cost is 
denoted by pC , which includes the preventive warranty expected cost 
and the loss of shutdown. Analogously, each whole failure warranty 
cost is denoted by fC . Consider the following two cases: (a) 1 2r r≤ ; 
(b) 1 2r r> . See Fig.2.

4.1.	 Case (a): 1 2r r≤

For this case, the warranty region is divided according 1r  and 2r  , 
and considering the value of usage rate R r= , the following three 
subcases are discussed:

	 (a.1) 1r r≤ ; (a.2) 1 2r r r< ≤ ; (a.3) 2r r< .

We denote the expected warranty costs and availability, con-

ditional on R r= , for the three subcases by ECr
1 ϖ( ) , ECr

2 ϖ( ) , 

ECr
3 ϖ( )  and EAr

1 ϖ( ) , EAr
2 ϖ( ) , EAr

3 ϖ( ) , respectively.

4.1.1.	 Case (a.1): 1r r≤

Cost model: In this case, the warranty over the subregions Ω1 and 
Ω2 will expire at time points K1 and K, respectively (see Fig.2). Then 
the expected warranty cost can be given as follows:

	 EC C EN K r nC EC T EC K Kr f p fi
i

n
fn1 1

1

1
1ϖ( ) = ( ) + + ( ) + ( )

=

−
∑ , ,   (6)

where EN K r1( )  represents failure quantities in the subregion Ω1. n 
is the number of imperfect preventive maintenance in the subregion 

Ω2. ( )fiEC T  is the expected cost of minimal repairs in the i-th peri-

odic preventive maintenance interval. EC K Kfn 1,( )  is the expected 

cost of minimal repairs between K T n T Tp p1 1+ + −( ) +( )  and K.
Since failures over [0, K1] are repaired minimally and no preven-

tive maintenance is implemented, the expected number of minimal 
repairs in the subregion Ω1 is equal to:

	 EN K r t r dtK
1

0
1( ) = ( )∫ λ .	 (7)

In general, the duration of a repair is minute relative to preventive 
maintenance period, so we can neglect the influence and use the eq.(7) 
to derive approximately expected the number of failure [9].

Periodic imperfect preventive maintenance will be implemented 
in the subregion Ω2. Given the period of preventive maintenance T 
and maintenance duration Tp, n is expressed by:

	 n n K K r int K K T T Tp p= ( ) = − −( ) +( ) + 1 1 1, .	 (8)

The warranty over the subregion Ω1 will expire at time K1, so the 
the conditional intensity function after the j-th imperfect maintenance 
(the j-th preventive maintenance interval) becomes:

	 λ λ α αj i
i

j
t r t K T r( ) = − −











=
∑1 1

2
.	 (9)

Then, in the i-th periodic preventive maintenance interval, fail-
ures are rectified by minimal repairs. Then, the numbers of minimal 
repairs is given by:

	 EN i t r dtr i
K i T iT

K i T T

p

p

( ) = ( )
+ − +

+ +

∫ λ
1

1

1( )

( )
.	 (10)

So the total expected cost of the minimal repairs in the n preven-
tive maintenance intervals can be given as follows:

Fig. 2. analysis for case (a) and (b)

(b) r1 > r2

(a) r1 ≤r 2
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	 EC T EN i Cfi
i

n
r

i

n
f( ) = ( )

=

−

=

−
∑ ∑

1

1

1

1
.	 (11)

In the same way, the failure number of the product between 

K T n T Tp p1 1+ + −( ) +( )  and K is expressed as:

	 EN n t r dtr n
K n T nT

K

p

( ) = ( )
+ − +

∫ λ
1 1( )

.	 (12)

So the expected warranty cost of the product of the time between 

K T n T Tp p1 1+ + −( ) +( )  to K is given as:

	 EC K K EN n Cfn r f1,( ) = ( ) .	 (13)

Then, the expected warranty cost can be obtained by inserting 
eq.(7)-(13) into (6):

EC C t r dt int K K T T T C

t r

r f
K

p p p

i
K

1
0

1
1

1

1ϖ λ

λ

( ) = ( ) + − −( ) +( ) + 

+ ( )

∫

+(( )

( )

( )i T iT

K i T T
f

i

n
n

K n T nT

K

p

p

p

dtC t r dtC
− +

+ +

=

−

+ − +
∫∑ ∫+ ( )
11

1

1

1

1

λ ff .  (14)

Availability model: In this case, since the warranty will cease at 
time K, expected availability in the warranty region can be expressed 
as follows:

	 EA
K ED

Kr
r1
1

ϖ
ϖ( ) = − ( )

,	 (15)

where EDr
1 ϖ( )  is the expected shutdown time in the warranty region 

and has the similar expression with ECr
1 ϖ( )  by Tp and Tf replace Cp 

and Cf . So EDr
1 ϖ( )  is given by:

	 ED T EN K r nT ET T ET K Kr f p fi
i

n
fn1 1

1

1
1ϖ( ) = ( ) + + ( ) + ( )

=

−
∑ , .   (16)

Similarly, ( )fiET T  is the expected shutdown time of minimal 
repairs in the i-th periodic preventive maintenance interval, and 

( )1,fnET K K  is the expected shutdown time of minimal repairs be-

tween ( )1 ( 1)p pK T n T T+ + − +  and K. The expressions as follows:

	 ET T EN i Tfi
i

n
r

i

n
f( ) = ( )

=

−

=

−
∑ ∑

1

1

1

1
,	 (17)

	 ET K K EN n Tfn r f1,( ) = ( ) .	 (18)

The remaining parameters are the same as in eq.(6). Then, the 
function of expected availability can be given as follows:

EA
K

T t r dt int K K T T T T

t r
r

f
K

p p p

i

1
0

1

1 1
11

ϖ

λ

λ
( ) = −

( ) + − −( ) +( ) + 

+ (

∫

)) + ( )
+ − +

+ +

=

−

+ − +
∫∑

K i T iT

K i T T
f

i

n
n

K n T nT

K

p

p

p

dtT t r
1

1

111

1

1( )

( )

( )
λ∫∫

















dtTf

.	
 (19)

To facilitate subsequent calculation, the expected cost in the war-
ranty region can be viewed as a function of the decision variables (K1, 
T) and the warranty time limit K, denote:

	 EC K K Tr
def

1 1ϖ φ( ) = ( ), , .	 (20)

Similarly, the expected availability in warranty region is denoted 
by:

	 EA K K Tr
def

1 1ϖ ξ( ) = ( ), , .	 (21)

4.1.2.	 Case (a.2): 1 2r r r< ≤

In this case, due to exceeding the usage limit L1, the warranty 
over the subregions Ω1 and Ω2 will expire at time points τ1  and K 

respectively (see Fig.2). With τ1 1= L r . Then the expected warranty 
cost for this case becomes:

	

EC K T

C EN r nC EC T EC K

r

f p fi
i

n
fn

2 1

1
1

1
1

ϖ φ τ

τ τ

( ) = ( )

= ( ) + + ( ) + ( )
=

−
∑

, ,

, ,  (22)

where the time limit K1 in eq.(6) is replaced by τ1 .

Similarly, the expected availability in the warranty region be-
comes:

EA K T

K T EN r nT ET T ET K

r

f p fi
i

n
fn

2 1

1
1

1
1

ϖ ξ τ

τ τ

( ) = ( )

= − ( ) + + ( ) + (
=

−
∑

, ,

, ))





















K . (23)

4.1.3.	 Case (a.3): 2r r<

In this case, due to exceeding the usage limit L1 and L, the war-
ranty over the subregions Ω1 and Ω2 will expire at time points τ1  and 
τ , respectively (see Fig.2). With:

	 τ1
1

=
L
r

, τ = L
r

,	

then the expected warranty cost for this case becomes:

	

EC T

C EN r nC EC T EC

r

f p fi
i

n
fn

3 1

1
1

1
1

ϖ φ τ τ

τ τ τ

( ) = ( )

= ( ) + + ( ) + ( )
=

−
∑

, ,

, ,   (24)

where the time limit K1 and K in eq.(6) is replaced by τ1  and τ , 
respectively.

Similarly, the expected availability in the warranty region be-
comes:
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EA T

T EN r nT ET T ET

r

f p fi
i

n
fn

3 1

1
1

1
1

ϖ ξ τ τ

τ τ τ τ

( ) = ( )

= − ( ) + + ( ) + (
=

−
∑

, ,

, ))





















τ . (25)

In the end, we remove the conditioning on R r= , where R has 
distribution function G(r), to get the expected warranty cost for case 
(a), given by:

EC EC dG r EC dG r EC dG rr
r

rr
r

rr
Ω ϖ ϖ ϖ ϖ( ) = ( ) ( ) + ( ) ( ) + ( ) ( )∫ ∫ ∫

∞1
0

2 31

1

2

2
. 

(26)

Similarly, the expected availability in the warranty region is given 
by:

EA EA dG r EA dG r EA dG rr
r

rr
r

rr
Ω ϖ ϖ ϖ ϖ( ) = ( ) ( ) + ( ) ( ) + ( ) ( )∫ ∫ ∫

∞1
0

2 31

1

2

2
. 

(27)

4.2. Case1 (b): 1 2r r>

For this case, similar to case (a), the following three subcases are 
considered:
	 (b.1) 2r r≤ ; (b.2) 2 1r r r< ≤ ; (b.3) 1r r< .

We use the same denotation setting with case (a) to model the 
expected warranty cost and availability under case (b).

Using eq.(17), the expected warranty cost under the three sub-
cases are given by:

	 EC K K Tr
1 1ϖ φ( ) = ( ), , ,

	 EC K Tr
2 1ϖ φ τ( ) = ( ), , ,

	 EC Tr
3 1ϖ φ τ τ( ) = ( ), , .

The expected availability under the three subcases are given by:

	 EA K K Tr
1 1ϖ ξ( ) = ( ), , ,

	 EA K Tr
2 1ϖ ξ τ( ) = ( ), , ,

	 EA Tr
3 1ϖ ξ τ τ( ) = ( ), , .

Note that subcases (1) and (3) for case (b) are the same as that for 
case (a), and the only difference is for subcase (2) since the warranty 
ceases at distinct time. See Fig. (2).

On removing the conditioning, we have the expected warranty 
cost given by:

EC EC dG r EC dG r EC dG rr
r

rr
r

rr
Ω ϖ ϖ ϖ ϖ( ) = ( ) ( ) + ( ) ( ) + ( ) ( )∫ ∫ ∫

∞1
0

2 32

2

1

1
, 

(28)
accordingly, the expected availability is given by:

EA EA dG r EA dG r EA dG rr
r

rr
r

rr
Ω ϖ ϖ ϖ ϖ( ) = ( ) ( ) + ( ) ( ) + ( ) ( )∫ ∫ ∫

∞1
0

2 32

2

1

1 .      

(29)

5. Deriving optimum warranty servicing strategy

Scientific warranty servicing strategy demands to control war-
ranty cost and guarantee availability simultaneously. To derive the 
optimum warranty servicing strategy, the optimizing model is given 
as follows:

	
min EC

s t EA A
K K T K K

   

   
 

Ω

Ω

( )

. . ( )
;

ϖ

ϖ ≥

< < < < −










0

1 10 0

	 (30)

where the decision variable ϖ = ( , , )K T r1 1 . The optimizing model is 
to minimize the warranty cost on the premise of ensuring the expect-

ed availability greater than 0A , which can derive optimum warranty 
servicing strategy for both manufacturer and consumer. As the model 
is difficult to calculate, a grid search in specific regions is performed 
to obtain the optimum results.

In general, when the 1 1( , )K r  is fixed, the expected warranty cost 

ECΩ ( )ϖ  will increase first and then decrease with the growth of 
the preventive maintenance interval T, and the expected availability 

EAΩ ( )ϖ ∗
 has the opposite trend. Based on the optimizing model pro-

posed above, the following three cases are considered (see Fig.3):

	 case (1): u cT T< , then uT T∗ = ,

	 case (2): l c uT T T≤ ≤ , then cT T∗ = ,

	 case (3): c lT T< , then lT T∗ = ,

where lT  and uT  represent the lower and upper limits of PM interval 

T under EA AΩ ( )ϖ ≥ 0 , respectively, and cT is the PM interval to min-

imize the expected warranty cost without constrains, T∗ is the optimal 

solution of the optimizing model under fixed 1 1( , )K r . Similarly, the 

values of T∗  can be obtained under different 1 1( , )K r , and then, the 

optimum warranty servicing strategy ϖ∗ ∗ ∗ ∗= ( , , )K T r1 1  and the cor-
responding ECΩ ( )ϖ∗  and EAΩ ( )ϖ ∗  can be derived by comparative 
analysis. The analytic procedure is analogous for other curve forms.

To obtain more integrated information about the optimum warran-
ty servicing strategy, unit cost-effective of the product is introduced 
as follows:

	 EV EC E EAΩ Ω Ω( ) ( ) ( )ϖ ϖ τ ϖ=  ,	 (31)

where Eτ  is the expected warranty period, and it is given by:

	 E KG r L rdG rrτ = +
∞
∫( ) ( )2

2
.	 (32)

The unit cost-effective of the product with optimum warranty 
servicing strategy can be derived using eq.(31), combining with the 
optimizing solutions, which can provide scientific information for 
both manufacturer and consumer.
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6. An example

Considering an automobile component sold with a free-repair 
warranty policy, we will pay attention to the warranty cost from the 
manufacturer perspective and the availability from the consumer per-
spective. Assume K=3 (3 years) and L=3 (30000 km), so r2=L/K=1. 

And the acceptable lower limit of availability is 0 0.92A = .
For the convenience of calculation, let improvement factors 

α αi = , that is each PM actions corresponding the same improvement 
factor. Commonly, the PMs duration Tp is less than the minimal repair 
duration Tf, and Cp≤Cf. The Cf and Tf are assumed to be constant with 
the value 1 and 0.02 respectively; then, Cp and Tp are assumed to be 
the function of improvement factor α , as follows:

	 C C Cp = +0 αβ, and T Tp f= =α α0 02. .

The expression shows the cost of preventive maintenance will in-
crease exponentially with the growth of improvement factor. In this 
instance, let 0 0.1C = , 1C =  and β = 3 .

In this example, as in [5], we consider the form for the initial con-
ditional failure intensity given by eq.(2), as follows:

	

λ θ θ θ θt r r T t U t

r r t

( ) = + + ( ) + ( )
= + + +( )

0 1 2 3

20 1 0 2 0 7 0 7. . . . .

The distribution of usage rate can be estimated using the real data. 
In this study, the following two distributions are considered:

	 Normal:   R ~ N [1, 0.46],
	 Excessive:  R ~ N [2, 0.86].

To see the impact of different usage rate distribution forms on the 
warranty servicing strategy, a uniform distribution is given to make a 
comparison:
	 R ~ uniform [0.2, 1.8] with E(R) =1, D(R) =0.46.

For different values of α  and for each of the three usage catego-
ries, a grid search is performed to find the optimal decision variables 
denoted by ϖ∗ ∗ ∗ ∗= ( )K T r1 1, ,  using the optimizing model in sec-

tion 5. The variable K1 and T are increasing in steps of 0.1 over the 
interval [0, 3] and [0.1, 3], respectively. For convenience, the value of 
rate parameter r1 is increasing in steps of 0.2 starting 0.2, and the re-
maining cases can be calculation in the same way.

Using the mathematical model and optimization procedure pro-

posed above, the optimal values of ECΩ ( )ϖ  and EAΩ ( )ϖ ∗ can be 
obtained for the three usage categories. Fig.4 shows the values of ex-
pected warranty cost and availability with normal usage, as r1 = 1 and
α = 0 6. .

Let 1 0.6K = , the warranty cost and availability trends can 

be derived by dimension reduction analysis to Fig.4, as shown in 
Fig.5. Obviously, it matches case (2) proposed in section 5, so 

cT T∗ =  .

Similarly, we can derive the corresponding optimal results with 
different r1 and α  under different usage categories, and the summary 
of these results is shown in Table 1 – Table 4.

Firstly, the two usage categories under normal distribution are 
considered and the results are presented in Table 1–Table 3. 

Fig. 3. Optimal T under different cases

Fig. 4. Grid patterns of cost and availability functions
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In Table 1, the minimum cost-effective of unit time EVΩ ϖ ∗( )  

under different improvement factors is given in column 4, and the cor-

respondingly optimal expected warranty cost ECΩ ( )ϖ∗  and availa-

bility EAΩ ( )ϖ ∗  are given in columns 2–3. Columns 5–6 present the 

minimum warranty cost EC0,T and maximum availability EA0,T when 
K1=0, that is, the periodic PMs are implemented during the whole 
warranty period. The last two columns present the minimum warranty 
cost ECMR and maximum availability EAMR without PM actions in 
warranty region. The notations in Table 2 are the same as in Table 1.

Optimal warranty servicing strategy and corresponding cost and 
availability in each row are printed in boldface in Table 1–Table 3. 
The following results can be obtained by analyzing these tables:

For each of the two usage categories, The warranty cost ECΩ ϖ ∗( )
is always less than EC0,T and ECMR, and the availability EAΩ ϖ ∗( ) al-

ways higher than EA0,T  and EAMR  under different α  values, which 
leads to a relatively lower unit efficient cost under the warranty serv-
icing strategy introduced in section 2. For example, for the excessive 
usage category, when α = 0 7. , the warranty cost under the combina-
tion strategy can be reduced by 55.1% and 7.4% compared adopting 
the minimal repair or periodic preventive maintenance alone, respec-
tively, and the corresponding availability has an increase of 3.4% and 
0.2%.

The values of unit efficient cost are decreasing firstly and then 
increasing with the rise of improvement factor. The optimal value is 
obtained when α = 0 5.  for normal usage and α = 0 7.  for excessive 
usage, which indicates that it is worthy to perform a better degree of 
imperfect preventive maintenance with high usage rates.

Fig. 5. The warranty cost and availability trends

Table 1 Optimization results for the normal usage rate under different α

α ECΩ ϖ ∗( ) EAΩ ϖ ∗( ) EVΩ ϖ ∗( ) EC0,T EA0,T ECMR EAMR

0.1 6.7394 0.9383 2.9172 6.7573 0.9364

8.0017 0.9347

0.2 5.6044 0.9406 2.4200 5.6375 0.9368

0.3 4.3174 0.9487 1.8483 4.3352 0.9441

0.4 3.8647 0.9549 1.6438 3.9238 0.9506

0.5 3.5530 0.9604 1.5025 3.6726 0.9594

0.6 3.5844 0.9606 1.5155 3.6285 0.9598

0.7 3.5852 0.9608 1.5155 3.6815 0.9602

0.8 3.6323 0.9611 1.5350 3.7327 0.9606

0.9 3.7662 0.9612 1.5914 3.8216 0.9609

Table 2.	 Optimization results for the excessive usage rate under different α

α ( )EC ϖΩ ∗ ( )EA ϖΩ ∗ ( )EV ϖΩ ∗ EC0,T EA0,T ECMR EAMR

0.1 2.6446 0.9302 2.2312 2.6589 0.9298

3.7121 0.9286

0.2 2.2884 0.9310 1.9346 2.3106 0.9309

0.3 2.0496 0.9397 1.7072 2.0725 0.9395

0.4 1.8773 0.9472 1.5569 1.9204 0.9470

0.5 1.7712 0.9535 1.4610 1.8181 0.9533

0.6 1.6850 0.9586 1.3846 1.8097 0.9585

0.7 1.6647 0.9603 1.3691 1.7971 0.9587

0.8 1.7078 0.9601 1.4006 1.8539 0.9587

0.9 1.8120 0.9596 1.4868 1.9854 0.9584
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The optimal parameters related to warranty servicing strategy are 
given in Table 3, which include the usage limit and age limit of Ω1 and 
preventive maintenance period T. It can be seen from the table that:

In most cases, the r1
* under normal usage is greater than under 

excessive usage, that is to say, the shape of the minimal repair region 
Ω1 is relatively flat and with a lower usage limit under excessive us-
age for a fixedα . It can be also noticed that the usage limit of region 

Ω1 has a growth trend when the improvement factors increase. The 
optimal warranty servicing strategies are printed in boldface.

Table 4 shows the optimal warranty servicing strategy and the 
value of unit efficient cost under normal distribution (R ~ N [1, 0.46]) 
and uniform distribution (R ~ uniform [0.2, 1.8]). As presented in this 
table, although the expectation and variation of the two distributions 
are identical, there are obvious differences in the optimal results, so 
it is important to confirm reasonable distribution according to reality 
before making warranty servicing strategy. 

Table 3.	 Optimal warranty servicing strategy for the two usage categories  under normal distribution

Usage category α K1
* L1

* T* r1
* ( )EV ϖΩ ∗

Normal

0.1 0.7 0.70 0.2 1.0 2.9172

0.2 0.8 0.80 0.2 1.0 2.4200

0.3 0.7 0.70 0.3 1.0 1.8483

0.4 0.9 0.90 0.5 1.0 1.6438

0.5 1.0 1.00 0.5 1.0 1.5025

0.6 0.9 0.90 0.7 1.0 1.5155

0.7 1.2 1.20 0.6 1.0 1.5155

0.8 1.1 1.10 0.7 1.0 1.5350

0.9 1.3 1.30 0.7 1.0 1.5914

Excessive

0.1 1.5 0.60 0.3 0.4 2.2312

0.2 1.6 0.64 0.2 0.4 1.9346

0.3 1.1 0.66 0.3 0.6 1.7072

0.4 1.3 0.78 0.4 0.6 1.5569

0.5 1.6 0.96 0.5 0.6 1.4610

0.6 1.5 0.90 0.6 0.6 1.3846

0.7 1.2 0.96 0.6 0.8 1.3691

0.8 0.8 0.80 0.6 1.0 1.4006

0.9 1.2 1.20 0.6 1.0 1.4868

Table 4.	 Optimal warranty servicing strategy for different usage rate distributions

Distribution forms α K1
* T* r1

* ( )EV ϖΩ ∗

Normal distribution

0.1 0.7 0.2 1.0 2.9172

0.2 0.8 0.2 1.0 2.4200

0.3 0.7 0.3 1.0 1.8483

0.4 0.9 0.5 1.0 1.6438

0.5 1.0 0.5 1.0 1.5025

0.6 0.9 0.7 1.0 1.5155

0.7 1.2 0.6 1.0 1.5155

0.8 1.1 0.7 1.0 1.5350

0.9 1.3 0.7 1.0 1.5914

Uniform distribution

0.1 0.7 0.2 1.0 2.9802

0.2 0.7 0.2 1.0 2.4739

0.3 0.8 0.3 1.0 2.0782

0.4 0.7 0.4 1.0 1.7656

0.5 0.7 0.5 1.0 1.5429

0.6 0.8 0.6 1.0 1.3930

0.7 0.9 0.7 1.0 1.2689

0.8 0.9 0.7 1.0 1.2848

0.9 1.0 1.0 1.0 1.3054
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Table 1 – Table 4 include the balance of the needs and interests 
between the manufacture and the consumer under different imperfect 
PM improvement factor, the corresponding calculation results as war-
ranty cost, the availability and unit efficient cost, which can provide 
scientific reference for selecting the reasonable warranty servicing 
strategy to balance the benefit of manufacturer and consumer. 

In addition, for the convenience of implement or maintenance 
capacity constraints reasons, the PM’s period T or improvement fac-
tor α  may be a limited value in reality, then we can also derive the 
optimum warranty servicing strategy using the mathematical model 
proposed in this paper (as shown in Fig. 4).

7. Conclusions

In this paper, a strategy combining the imperfect preventive main-
tenance and minimal repair is proposed under the free repair war-
ranty policy, then warranty cost and availability models are built, and 
optimum warranty servicing strategies are identified with respect to 

both warranty cost and product availability. We provide a numerical 
illustration to show the optimization method and accurate calculation 
results under different strategies and make a comparison, which can 
offer a reference to select the optimum warranty servicing strategy 
benefiting both manufacturer and consumer.

The result of this paper can be extended in several ways. One 
possible extension is to consider the preventive maintenance under 
pro-rata warranty policy since the PMs can improve the product avail-
ability and benefit to consumer. Another option for generalization is 
to develop the functional relationship between the product availability 
and sales, and then, make the optimum warranty servicing strategy.
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