PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

PIV measurement of tube-side in a shell and tube heat exchanger

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to improve the performance of the shell and tube heat exchanger, a porous baffle and a splitter bar are employed in this research. Through the arrangement of the porous baffle in the tube-side inlet and the splitter bar in the tube, the flow distribution of liquid in the heat exchanger is improved. PIV technology is used to investigate the unsteady flow in the tube-side inlet and the outlet of different models. The porous baffle significantly improves the flow of fluid in the shell and tube heat exchanger, especially by eliminating/minimizing the maldistribution of fluid flow in the tube-side inlet. The performance of the arc baffle is better than that of the straight baffle. The splitter bar has a minimal effect on the flow field of the tube-side inlet, but it effectively improves the flow in the tube bundle and restrains the vortex generation in the tube-side outlet.
Słowa kluczowe
Rocznik
Strony
60--66
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
autor
  • Jiangsu University, Research Center of Fluid Machinery Engineering and Technology, Zhenjiang 202013, China
autor
  • Jiangsu University, Research Center of Fluid Machinery Engineering and Technology, Zhenjiang 202013, China
autor
  • Jiangsu University, Library, Zhenjiang 202013, China
autor
  • Midea Kitchen Appliances Division, Foshan 528311, China
  • Gyeonsang National University, Research Center for Aircraft Parts Technology, Jinju 660701, S. Korea
  • Gyeonsang National University, School of Mechanical and Aerospace Engineeeing, Jinju 660701, S. Korea
Bibliografia
  • 1. Pan M., Jamaliniya S., Smith R., Bulatov I. & Goughb M., Higleyb T. & Droegemuellerb P. (2013). New insights to implement heat transfer intensification for shell and tube heat exchangers. Energy 57(8), 208–221. DOI: 10.1016/j.energy.2013.01.017.
  • 2. Sanaye, S. & Hajabdollahi, H. (2010). Multi-objective optimization of shell and tube heat exchangers. Appl. Therm. Enginee. 30(14), 1937–1945. DOI: 10.1016/j.applthermaleng.2010.04.018.
  • 3. Ozden, E. & Tari, I. (2010). Shell side CFD analysis of a small shell-and-tube heat exchanger. Energy Conver. Managem. 51(5), 1004–1014. DOI: 10.1016/j.enconman.2009.12.003.
  • 4. Hosseini, R., Hosseini-Ghaffar, A. & Soltani M. (2007). Experimental determination of shell side heat transfer coefficient and pressure drop for an oil cooler shell-and-tube heat exchanger with three different tube bundles. Appl. Therm. Enginee. 27(5–6), 1001–1008. DOI: 10.1016/j.applthermaleng.2006.07.023.
  • 5. Pacio, J.C. & Dorao, C.A. (2010). A study of the effect of flow maldistribution on heat transfer performance in evaporators. Nuc. Enginee. Design 240(11), 3868–3877. DOI: 10.1016/j.nucengdes.2010.09.004.
  • 6. Mohr, U. & Gelbe, H. (2000). Velocity distribution and vibration excitation in tube bundle heat exchangers. Int. J. Therm. Sci. 39(3), 414–421. DOI: 10.1016/S1290-0729(00)00214-3.
  • 7. Kim, M.I., Lee, Y., Kim B.W., Lee, D.H. & Song W.S. (2009). CFD modeling of shell-and-tube heat exchanger header for uniform distribution among tubes. Korean J. Chem. Enginee. 26(2), 359–363. DOI: 10.1007/s11814-009-0060-7.
  • 8. Wang, K., Tu, X.C., Bae, C.H. & Kim, H.B. (2015). Optimal design of porous baffle to improve the flow distribution in the tube-side inlet of a shell and tube heat exchanger. Int. J. Heat Mass Trans. 80, 865–872. DOI: 10.1016/j.ijheatmasstransfer.2014.09.076.
  • 9. Wang, K., Tu, X.C. & Kim, H.B. CFD simulation and PIV measurement of a shell and tube heat exchanger. The 9th Pacific Symposium on Flow Visualization and Image Processing, 25–28 August 2013. Busan, Korea.
  • 10. Wang S., Wen, J. & Li, Y. (2009). An experimental investigation of heat transfer enhancement for a shell-and-tube heat exchanger. App. Therm. Enginee. 29(11–12), 2433–2438. DOI: 10.1016/j.applthermaleng.2008.12.008.
  • 11. Lalot, S., Florent, P., Lang, S.K. & Bergles, A.E. (1999). Flow maldistribution in heat exchangers. Appl. Therm. Enginee. 19(8), 847–863. DOI: 10.1016/S1359-4311(98)00090-8.
  • 12. Jiao, A., Zhang, R. & Jeong, S. (2003). Experimental investigation of header configuration on flow maldistribution in plate-fin heat exchanger. Appl. Therm. Enginee. 23(10), 1235–1246. DOI: 10.1016/S1359-4311(03)00057-7.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57753f26-d48b-49a3-92a5-50a79066e4c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.