Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article introduces the operating principle of the wave energy device and makes AMEsim simulated analysis in the influence of the amplitude and period of the wave on the output efficient. By using the result of the simulation to optimize design, the article puts forwards a kind of suitable control technology which based on the disclosed amplitude and period of the wave to control the check valve, invoking the motor in different levels of efficiency. This kind of technology aims to solve the problem which includes low efficiency and high start wave of the wave energy device. The result is verified by the physical experiment, which lays the foundation for the implementation of marine engineering. The established methods of simulation model and analysis results are expected to be useful to designing and manufacturing of wave energy converter.
Czasopismo
Rocznik
Tom
Strony
123--130
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
- Mechanical Engineering Institute, Shandong University, Jinan, Shandong, China
autor
- Mechanical Engineering Institute, Shandong University, Jinan, Shandong, China
Bibliografia
- 1. Shi, H.D., Cao, F,F., Ma, Z., Liu, Z., 2014. Physical Model Experimental Study on the Floating Buoy Wave Power Generator. Journal of Ocean Technology. 33 (4):98–104.
- 2. Gao, H.T., Li, B., 2015. Establishment of motion model for wave capture buoy and research on hydrodynamic performance of floating-type wave energy converter. Polish Maritime Research. 22 (S1):106–111.
- 3. Birgersson, K.E., Balaya, P., Yan, J., 2011. Energy Solutions for a Sustainable World. Applied Energy. 90 (1), 1-2.
- 4. EstebanθM., Leary, D., 2012. Current developments and future prospects of offshore wind and ocean energy. Applied Energy, 90(1):128-136.
- 5. Yang, L., Hals, J., Moan, T., 2010. Analysis of dynamic effects relevant for the wear damage in hydraulic machines for wave energy conversion. Ocean Engineering. 37(13):1089-1102.
- 6. Evans, D.V., 1981. Maximum wave-power absorption under motion constraints. Applied Ocean Research 3 (4):200–203.
- 7. Choi, K.S., Yang, D.S., Park, S.Y., Cho, B.H., 2012. Design and performance test of hydraulic PTO for wave energy converter. International Journal of Precision Engineering & Manufacturing. 13(5), 795-801.
- 8. Pizer, D.J., 1993. Maximum wave-power absorption of point absorbers under motion constraints. Applied Ocean Research. 15 (4), 227–234.
- 9. Vantorre, M., Banasiak, M., Verhoeven, R., 2004. Modelling of hydraulic performance and wave energy extraction by a point absorber in heave. Applied Ocean Research 26, 61–72.
- 10. Babarit, A., Duclos, G., Clement, A.H., 2004. Comparison of latching control strategies for a heaving wave energy device in random sea. Applied Ocean Research 26, 227–238.
- 11. Ma, Z., 2013. The Study on Hydrodynamic Performance of Oscillating Floater Buoy Wave Energy Converter [D]. Ocean University of China.
- 12. Zhang, D.H., Li, W., Lin, Y.G., 2009. Wave energy in China: Current status and perspectives. Renewable energy. 34(10), 2089–2092.
- 13. Bailey, H., Bryden, I.G., 2011. Influence of a quadratic power take-off on the behavior of a self-contained inertial referenced wave energy converter. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., 226 (1), 15–22.
- 14. Zhang, D.X., 2001, Analyzing primary parameters of twinfloater ocean wave generate electricity device and designing it with most optimal geometric shape. Yan shan University. 46-50.
- 15. Antonelli, M., Baccioli, A., Francesconi, M., Psaroudakis, P., Martorano, L., 2015. Small Scale ORC Plant Modeling with the AMESim Simulation Tool: Analysis of Working Fluid and Thermodynamic Cycle Parameters Influence. Energy Procedia. 81:440-449.
- 16. Lisowski, J., 2014. Comparison of dynamic games in application to safe ship control. Polish Maritime Research. 21(3), 3-12.
- 17. Phan, L.K., Stive, M.J.F., 2015. Coastal Mangrove Squeeze in the Mekong Delta. Journal of Coastal Research. 31(2), 233-243.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-577260db-02d4-4800-ab69-daa275f217a2