PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Glycolide/L-Lactide Copolymer (PGLA) Fibers Formed by Wet Spinning from Solution and Modified with Ceramic Nanoadditives

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of research into glycolide/L-lactide copolymer (PGLA) fiber formation by wet spinning from solution. The selected process conditions led to fibers with a specific tensile strength of more than 35 cN/tex. Furthermore, ceramic nanoadditives such as hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP) were used to obtain fibers with osteoconductive properties. It was found that the ceramic nanoadditives reduced the specific strength of fibers (to 24 cN/tex for β-TCP and to 27 cN/tex for HAp). The paper also presents wide-angle X-ray scattering (WAXS) evaluation of the supramolecular structure of the fibers as well as their porosity parameters and microscopic structure. The obtained fibers were woven into a textile fabric with potential applications in biomedical engineering.
Słowa kluczowe
Rocznik
Strony
258--268
Opis fizyczny
Bibliogr. 49 poz.
Twórcy
autor
  • Lodz University of Technology, Department of Material and Commodity Sciences and Textile Metrology, Poland, 90-924 Lodz, Zeromskiego 116 Street
autor
  • Lodz University of Technology, Department of Material and Commodity Sciences and Textile Metrology, Poland, 90-924 Lodz, Zeromskiego 116 Street
  • Lodz University of Technology, Department of Material and Commodity Sciences and Textile Metrology, Poland, 90-924 Lodz, Zeromskiego 116 Street
autor
  • Lodz University of Technology, Department of Material and Commodity Sciences and Textile Metrology, Poland, 90-924 Lodz, Zeromskiego 116 Street
autor
  • Lodz University of Technology, Department of Material and Commodity Sciences and Textile Metrology, Poland, 90-924 Lodz, Zeromskiego 116 Street
Bibliografia
  • [1] Sharma V, Mobin SM. Cytocompatible peroxidase mimic CuO:graphenenanosphere composite as colorimetric dual sensor for hydrogen peroxide and cholesterol with its logic gate implementation.Sensors and Actuators, B: Chemical 2017; 240:338-348.
  • [2] Davachi S.M., Shiroud Heidari B, Hejazi I, Seyfi J, Oliaei E., Farzaneh A, Rashedi H. Interface modified polylactic acid/starch/poly ε-caprolactone antibacterial nanocomposite blends for medical applications. Carbohydrate Polymers 2017; 155:336-344
  • [3] Mahmoudi N, Simchi A. On the biological performance of graphene oxide-modified chitosan/polyvinyl pyrrolidonenanocomposite membranes: In vitro and in vivo effects of graphene oxide.Materials Science and Engineering C 2017; 70:121-131.
  • [4] Ray SS, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci. 2003; 28:1539-1641.
  • [5] Xue Jiang, Yan Luo, Xiuzhi Tian, Dan Huang, Narendra Reddy, and Yiqi Yang; Chemical Structure of Poly(lactic acid) w: Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications; edited by: Auras R., Lim L.T., Selke S.E.M., Tsuji H.; John Willey & Sons 2010.
  • [6] Perepelkin KE. Polylactide Fibres: Fabrication, Properties, Use, Prospects. A Review. Fibre Chemistry 2002; 34(2):85-100.
  • [7] Auras R, Haste B, Selka S. An overview of polylactides as packaging materials. Macromolecular Bioscience 2004; 4:835-864.
  • [8] Duda A, Penczek S. Polilaktyd [poli(kwasmlekowy)]: synteza, właściwości i zastosowania. Polimery 2003;48(1):16-23.
  • [9] Hyon SH, Jamshidi K, Ikada Y. Synthesis of polylactides with different molecular weights. Biomaterials 1997; 18(22):1503-8.
  • [10] Bellini D, Cencetti C, Sacchetta AC, Battista AM, Martinelli A., Mazzucco L, Scotto D’Abusco A, Matricardi P. PLAgrafting of collagen chains leading to a biomaterial with mechanical performances useful in tendon regeneration. Journal of the Mechanical Behavior of Biomedical Materials 2016; 64:151-160.
  • [11] Rodriguez EJ, Marcos B, Huneault MA.Hydrolysis of polylactide in aqueous media.Journal of Applied Polymer Science 2016; 133(44): Article number 44152
  • [12] Bobel AC, Lohfeld S, Shirazi RN, McHugh PE.Experimental mechanical testing of Poly (L-Lactide) (PLLA) to facilitate pre-degradation characteristics for application in cardiovascular stenting. Polymer Testing 2016; 54:150-158.
  • [13] Chlopek J., Morawska-Chochol A, Paluszkiewicz C, Jaworska J, Kasperczyk J, Dobrzyński P. FTIR and NMR study of poly(lactide-co-glycolide) and hydroxyapatite implant degradation under in vivo conditions.Polymer Degradation and Stability 2009; 94(9):1479-1485.
  • [14] Mitchell MK, Hirt DE. Degradation of PLA fibers at elevated temperature and humidity.Polymer Engineering and Science 2015; 55(7):1652-1660.
  • [15] Liu JW, Zhao Q, Wan CX.Research progresses on degradation mechanism in vivo and medical applications of polylactic acid.Space medicine & medical engineering 2001; 14(4):308-312.
  • [16] Heidari BS, Oliaei E, Shayesteh H, Davachi SM, Hejazi I, Seyfi J, Bahrami M, Rashedi H. Simulation of mechanical behavior and optimization of simulated injection molding process for PLA based antibacterial composite and nanocomposite bone screws using central composite design. Journal of the Mechanical Behavior of Biomedical Materials 2017; 65:160-176.
  • [17] Krucińska I, Chrzanowska O, Boguń M, Kowalczuk M, Dobrzyński P. Fabrication of PLGA/Hap and PLGA/PHB/Hap Fibrous Nanocomposite Materials for Osseous Tissue Regeneration. Autex Research Journal 2014; 14(2):95-110
  • [18] Ghosh S, Vasanthan N. Structure development of poly(Llactic acid) fibers processed at various spinning conditions. Journal of Applied Polymer Science 2006; 101(2):1210–1216.
  • [19] Ficek K, Filipek J, Wojciechowski P, Kopec K, Stodolak-Zych E, Blazewicz S. A bioresorbablepolylactide implant used in bone cyst filling. Journal of Materials Science: Materials in Medicine 2016; 27:23
  • [20] Timashev P, Kuznetsova D, Koroleva A, Prodanets N, Deiwick A, Piskun Y, Bardakova K, Dzhoyashivili N, Kostjuk S, Zagaynova E, Rochev Y, Chichkov B, Bagratashvili V. Novel biodegradable star shaped polylactide scaffolds for bone regeneration fabricated by two-photon polymerization. Nanomedicine 2016; 11(9):1041-1053
  • [21] Domalik-Pyzik P, Morawska-Chochół A, Chłopek J, Rajzer I, Wrona A, Menaszek E, Ambroziak M. Polylactide/polycaprolactone asymmetric membranes for guided bone regeneration. e-Polymers 2016; 16(5):351-358
  • [22] McDermott AM, Mason DE, Lin ASP, Guldberg RE, Boerckel JD. Influence of structural load-bearing scaffolds on mechanical load- and BMP-2-mediated bone regeneration. Journal of the Mechanical Behavior of Biomedical Materials 2016; 62:169-181
  • [23] Gredes T, Kunath F, Gedrange T, Kunert-Keil Ch. Bone Regeneration after Treatment with Covering Materials Composed of Flax Fibers and Biodegradable Plastics: A Histological Study in Rats. BioMed Research International 2016; Article ID 5146285
  • [24] Zhaoqun D, Yun XWY. Characterization of structure and properties of polylactic fiber; Journal of Applied Polymer Science, Special Issue: Biopolymers and Renewably Sourced Polymers 2012; 125(S2): E149–E157.
  • [25] Cicero JA, Dorgan JR. Physical Properties and Fiber Morphology of Poly(lactic acid) Obtained from Continuous Two-Step Melt Spinning. Journal of Polymers and the Environment 2001; 9(1): 1-10
  • [26] Paakinahoa K, Elläa V, Syrjäläb S, Kellomäkia M. Melt spinning of poly(l/d)lactide 96/4: Effects of molecular weight and melt processing on hydrolytic degradation. Polymer Degradation and Stability 2009; 94(3):438–442.
  • [27] Schmack G, Tändler B, Optiz G, Vogel R, Komber H, Häußler L, Voigt D, Weinmann S, Heinemann M, Fritz H-G. High-speed melt spinning of various grades of polylactides. Journal of Applied Polymer Science 2004; 91(2): 800–806.
  • [28] Krucińska I, Boguń M, Chrzanowska O, Chrzanowski M, Król P. Research concerning fabrication of fibrous osteoconductive PLGA/HApnanocomposite material using the method of electrospinning from polymer solution. Autex Research Journal 2013; 13(3):57-66.
  • [29] Signori F, Coltelli M-B, Bronco S. Thermal degradation of poly(lactic acid)(PLA) and poly(butylene adipate-co-terephthalate)(PBAT) and their blends upon melt processing. Polymer Degradation and Stability 2009; 94:74-82
  • [30] Król P, Boguń M, Szparaga G, Mikołajczyk T. Poly(L-DL-Lactic Acid) (PLDLA) and Poly(Lactic Acid-co-Glycolide) (PGLA) in Wet Spinning Technology of Fibers Forming. Proceedings of International Conference on Medical Textiles and Healthcare Products, MedTex2015, Lodz, Poland 2015
  • [31] Boguń M, Szparaga G, Król P, Mikołajczyk T, Rabiej S. Calcium Alginate Fibers Containing Metallic Nanoadditives. Journal of Applied Polymer Science 2014; 131(9):40223.
  • [32] Boguń M, Rabiej S. The Influence of Fiber Formation Conditions on the Structureand Properties of Nanocomposite Alginate Fibers Containing Tricalcium Phosphateor Montmorillonite. Polymer Composites 2010;31:1321-1331.
  • [33] Gervaso F, Padmanabhan SK, Scalera F, Sannino A, Licciulli A. Mechanical stability of highly porous hydroxyapatite scaffolds during different stages of in vitro studies.Materials Letters 2016; 185:239-242.
  • [34] Khojasteh A, Fahimipour F, Eslaminejad MB, Jafarian M, Jahangir S, Bastami F, Tahriri M, Karkhaneh A, Tayebi L. Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering. Materials Science and Engineering 2016;69: 780-788.
  • [35] Qi H, Ye Z, Ren H, Chen N, Zeng Q, Wu X, Lu T. Bioactivity assessment of PLLA/PCL/HAP electrospunnanofibrous scaffolds for bone tissue engineering.Life Sciences 2016;148:139-144.
  • [36] Ma R, Yu Z, Tang S, Pan Y, Wei J, Tang T. Osseointegration of nanohydroxyapatite- or nano-calcium silicateincorporated polyetheretherketonebioactive composite in vivo. International Journal of Nanomedicine 2016;11:6023-6033
  • [37] Khoshakhlagh P, Rabiee SM, Kiaee G, Heidari P, Miri AK, Moradi R, Moztarzadeh F, Ravarian R. Development and characterization of a bioglass/chitosan composite as an injectable bone substitute. Carbohydrate Polymers 2017;157:1261-1271
  • [38] PremAnanth K, Joseph Nathanael A, Jose SP, Oh TH, Mangalaraj D. A novel silica nanotube reinforced ionic incorporated hydroxyapatite composite coating on polypyrrole coated 316L SS for implant application. Materials Science and Engineering C 2016;59:1110-1124
  • [39] Zhao X, You J, Xie Y, Cao H, Liu X. Nanoporous SiO2/TiO2 composite coating for orthopedic application. Materials Letters 2015;152:53-56
  • [40] Choi AH, Ben-Nissan B.Calcium phosphate nanocoatings and nanocomposites, part I: Recent developments and advancements in tissue engineering and bioimaging. Nanomedicine 2015; 10(14):2249-2261
  • [41] Boguń M, Krucińska I, Król P, Szparaga G, Mikołajczyk T, Dobrzyński P, Kowalczuk M, Kasperczak J, Pastusiak M, Smola A. Sposóbwytwarzaniawłókien o rozmiarachmikrometrycznych i podwyższonychwłaściw ościachwytrzymałościowych z poli(kwasumlekowego) orazjegokopolimerówmetodą z roztworunamokro.Patent PL 399819 (2014).
  • [42] Ziabicki A. Fundamentals of fibre formation: The Science of Fibre Spinning and Drawing. John Wiley&Sons, USA, 1976,
  • [43] Mikołajczyk T, Boguń M, Rabiej S, Król P. Zinc Alginate Fibres Containing Nanosilica”, Fibres&Textiles in Eastern Europe 2010; 6:39.
  • [44] Rabiej M. Application of the genetic algorithms and multiobjective optimisation to the resolution ofX-Ray diffraction curves of semicrystalline polymers. Fibres Text. East. Eur. 2003;11:83-87.
  • [45] Rabiej M, Application of multicriterial optimization of crystallinity degree of semicrystalline polymers. Polimery 2003;48:288-295.
  • [46] Stoclet G, Seguela R, Lefebvre J-M and Rochas C.New insights on the strain-induced mesophase of poly(D, Llactide): in situ WAXS and DSC study of the thermomechanical stability. Macromolecules 2010, 43: 7228-7237.
  • [47] Solarski S, Ferreira M and Devaux E. Characterization of the thermal properties of PLA fibers by modulated differential scanning calorimetry Polymer 2005, 46: 11187-11192.
  • [48] Puchalski M, Sulak K, Chrzanowski M, Sztajnowski S, Krucińska I. Effect of processing variables on the thermal and physical properties of poly(L-lactide) spun bond fabrics. Textile Research Journal 2015, 85: 535-547.
  • [49] Puchalski M, Kwolek S., Szparaga G., Chrzanowski M., Krucińska I.Investigation of the influence of PLA molecular structure on the crystalline forms (α″ and α) and Mechanical Properties ofWet Spinning Fibres. Polymers, 2017, 9(1), 18.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57718676-f34f-440e-9ceb-5886fb4df6cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.