PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automated Design of Honeycomb Conformal Cooling Channels for Improving Injection Molding Quality

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study of conformal cooling channel usually has adopted two assumptions in model design: the use of (1) a hot runner system and (2) a one-mold-one-cavity design. These assumptions substantially simplify the research. However, most molds are designed using a cold runner system and multiple cavities. These two assumptions may not apply to all commercial systems; hence, a design method for honeycomb CCCs for cold runner systems and multiple cavities is proposed in this study. Specifically, an algorithm was developed to automatically design CCCs for such systems. This algorithm can be used to reduce the cooling time, improve product quality, and ensure that the system temperature is relatively homogenous in practical situations. According to the result of this study, the honeycomb CCC models were more effective at maintaining a homogeneous temperature distribution, reducing shrinkage, and reducing warpage for both parts produced from the same two-cavity mold, thus ensuring consistent part quality.
Rocznik
Strony
44--57
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
  • 1College of Mechanical and Electrical Engineering, National Taipei University of Technology, Taipei City, Taiwan (R.O.C)
  • 2Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei City, Taiwan (R.O.C)
autor
  • 1College of Mechanical and Electrical Engineering, National Taipei University of Technology, Taipei City, Taiwan (R.O.C)
Bibliografia
  • 1. Altaf, K., Rani, A.M.A., Raghavan, V.R., 2011. Fabrication of Chircular and Profiled Conformal Cooling Channels in Aluminum Filled Epoxy Injection Mould Tools. 2011 National Postgraduate Confernece. Perak, Malaysia.10.1109/NatPC.2011.6136406
  • 2. Au, K.M., Yu, K.M., 2006. Variable Radius Conformal Cooling Channel for Rapid Tool. Material Science Forum, 532, 520-523.10.4028/www.scientific.net/MSF.532-533.520
  • 3. Au, K.M., Yu, K.M., 2007. A Scaffolding Architecture for Conformal Cooling Design in Rapid Plastic Injection Moulding. The Interantional Jpurnal of Advanced Manufacturing Technology, 34, 496-515.10.1007/s00170-006-0628-x
  • 4. Au, K.M., Yu, K.M., 2011. Modeling of multi-connected porous passageway for mould cooling. Computer-Aided Design, 989-1000.10.1016/j.cad.2011.02.007
  • 5. Au, K.M., Yu, K.M., 2014. Variable Distance Adjustment for Conformal Cooling Channel Design in Rapid Tool. International Journal of Manufacturing Science and Engineering, 136.10.1115/1.4026494
  • 6. Au, K.M., Yu, K.M., Chiu, W.K., 2011. Visiability-based Conformal Cooling Channel Generation for Rapid Tooling. Computed-Aided Design, 43, 356-373.10.1016/j.cad.2011.01.001
  • 7. Brooks, H., Brigdem, K., 2016. Design of Conformal Cooling Layers with Self-Supporting Lattices for Additivel Manufactured Tooling. Additive Manufacturing, 11, 16-22.10.1016/j.addma.2016.03.004
  • 8. Chang, K.H., 2015. Chapter 15 - Product Cost Estimating. In e-Design: Computer-Aided Engineering Design, 787-844, Academic Pr.10.1016/B978-0-12-382038-9.00015-6
  • 9. Choi, J.H., Kim, J.S., Han, E.S., Park, H.P., Rhee, B.O., 2014. Study on an Optimized Configuration of Conformal Cooling Channel by Brabching Law. Proceeding of the ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. Copenhagen, Denmark.10.1115/ESDA2014-20431
  • 10. Dang, X.P., Park, H.S., 2011. Design of U-shape Milled Groove Conformal Cooling Channels for Plastic Injection Mold. International journal of precision engineering and manufacturing, 12(1), 73-84.10.1007/s12541-011-0009-8
  • 11. Frings, M., Behr, M., Elgeti, S., 2017. A Simplified Simulation Model for a HPDC Die with Conformal Cooling Channels. Proceedings of the 20th International ESAFORM Conference on Material Forming.10.1063/1.5008200
  • 12. Goktas, M., Guldas, A., Bayraktar, O., 2016. Cooling of Plastic Injection Moulds Using Conformal Cooling Chanals. 3rd International Conference on Engineering and Natural Science, 2075-2081. Sarajevo, Bosnia.
  • 13. Hall, M. Krystofik, M., 2015. White Paper Conformal Cooling. Rochester Institute of Technology.
  • 14. Han, S., Salvatore, F., Bajolet, J., Rech, J., 2020. Abrasive flow machining (AFM) finishing of conformal cooling channels created by selective laser melting (SLM). Precision Engineering, 20-33.10.1016/j.precisioneng.2020.03.006
  • 15. Homar, D., Pušavec, F., 2016. The Development of a Recognition Geometry Algorithm for Hybrid- Subtractive and Additive Manufacturing. Journal of Mechanical Engineering, 151-160.10.5545/sv-jme.2016.3924
  • 16. Hsu, F.H., Wang, K., Huang, C.T., Chang, R Y., 2013. Investigation on conformal cooling system design in injection molding. Advances in Production Engineering & Management(8), 107-115.10.14743/apem2013.2.158
  • 17. Hu, P., He, B., Ying, L., 2016. Numerical Investigation on Cooling Performance of Hot Stamping Tool with Various Channel Designs. Applied Thermal Engoneering, 338-351.10.1016/j.applthermaleng.2015.10.154
  • 18. Jahan, A.S., Wu, T., Zhang, Y., Zhang, J., Tovar, A., Elmounayri, H., 2017. Thermo-mechanical design optimization of conformal cooling channels using design of experiments approach. 45th SME North American Manufacturing Research Conference. NAMRC 45, LA, USA.10.1016/j.promfg.2017.07.078
  • 19. Jahan, S.A., Wu, T., Zhang, Y., El-Mounayri, H., Tovar, A., Zhang, J., Acheson, D., Nalim, R., Guo, X., Lee, W.H., 2016. Implementation of COnformal Cooling & Topology Optimization in 3D Printed Stainless Steel Porous Structure Injection Molds. Procedia Manufacturing, 901-915.10.1016/j.promfg.2016.08.077
  • 20. Kanbur, B.B., Shen, S., Zhou, Y., Duan, F., 2019. Thermal and Mechanical Simulations of the Lattice Structures in the conformal cooling cavities for 3D printed injection molds. Materilas Today: Proceedings, 28, 379-383.10.1016/j.matpr.2019.10.017
  • 21. Karthikeyan, S., Jayabal, S., Subramanian, K.S., Chinnakannan, B., 2015. Influence of Cooling Channel Position and Form on Polymer Solidification and Temperature in Injection Molding Die. International Journal for Research in Applied Science & Engineering, 13(98), 447-453.
  • 22. Kuo, C.C., Jiang, F.Z., Yang, Y.X., Chu, X.S., Wu, Q.J., 2020. Characterization of a direct metal printed injection mold with different conformal cooling channels. The International Journal of Advanced Manufacturing Technology, 1223-1238.10.1007/s00170-020-05114
  • 23. Li, C.G., Li, C.L., 2008. Plastic injection mould cooling system design by the configuration space method. Computer-Aided Design, 334-349.10.1016/j.cad.2007.11.010
  • 24. Li, C.L., 2001. A feature-based approach to injection mould cooling system design. Computer-Aided Design, 1073-1090.10.1016/S0010-4485(00)00144-5
  • 25. Li, C.L., Li, C.G., Mok, A.C.K., 2005. Automatic layout design of plastic injection mould cooling system. Computer-Aided Design, 37, 645-662.10.1016/j.cad.2004.08.003
  • 26. Li, Z., Wang, X.Y., Gu, J.F., Ruan, S.L., Shen, C.Y., Lyu, Y., Zhon, W., 2017. Topology Optimization for the Design of Conformal Cooling System in Thin-Wall Injection Molding Based on BEM. The International Journal Advanced Manufacturing Technology, 94, 1041-1059.10.1007/s00170-017-0901-1
  • 27. Luh, Y.P., Chin, C.C., Iao, H.W., (In Production). Automatic design of conformal cooling channel with an asymmetric center. International Journal of Computer Applications in Technology.
  • 28. Luh, Y.P., Wang, H.L., Iao, H.W., Kuo, T.C., 2019. Using hotspot analysis to establish non-equidistant cooling channels automatically. Journal of the Chinese Institute of Engineers, 690-699.10.1080/02533839.2019.1660226
  • 29. Marques, S., Souza, F.A., Miranda, R.J., Yadroitsau, I., 2015. Design of conformal cooling for plastic injection moulding by heat transfer simulation. Polímeros, 25(6), 564-574.10.1590/0104-1428.2047
  • 30. Meckley, J., Edwards, R., 2009. A Study on the Design and Effectiveness of Conformal Cooling Channels in Rapid Tooling Inserts. The Technology Interface Journal/Fall, 10, 1-28.
  • 31. Mercado-Colmenero, J.M., Martin-Doñate, C., Rodriguez-Santiago, M., Moral-Pulido, F., Rubio-Paramio, M.A., 2019. A new conformal cooling lattice design procedure for injection molding applications based on expert algorithms. The International Journal of Advanced Manufacturing Technology, 102, 1719-1746.10.1007/s00170-018-03235-3
  • 32. Mercado-Colmenero, J.M., Rubio-Paramio, M.A., de J. Marquez-Sevillano, J., Martin-Doñate, C., 2018. A new method for the automated design of cooling systems in injection molds. Computer-Aided Design, 104, 60-86.10.1016/j.cad.2018.06.001
  • 33. Mercado-Colmenero, J.M., Torres-Alba, A., Catalan-Requena, J., Martin-Doñate, C., 2021. A New Conformal Cooling System for Plastic Collimators Based on the Use of Complex Geometries and Optimization of Temperature Profiles. Polymers, 13.10.3390/polym13162744840107834451282
  • 34. Oh, S.H., Ha, J.W., Park, K., 2022. Adaptive Conformal Cooling of Injection Molds Using Additively Manufactured TPMS Structures. Polymers, 181.10.3390/polym14010181874768635012204
  • 35. Park, H.S., Dang, X.P., 2010. Optimization of Conformal Cooling Channels with Array of Baffles for Plastic Injection Mold. International Journal of precision engineering manufacturing, 11(6), 879-890.10.1007/s12541-010-0107-z
  • 36. Park, H.S., Dang, X.P., 2012. Design and Simulation-Base Optimization of Cooling Channels for Plastic Injection Mold. New Technology- Trends, Innovations and Research, 19-44.10.5772/32730
  • 37. Park, H.S., Pham, N.H., 2009. Design of conformal cooling channels for an automotive part. International Journal of Automotive Technology, 10(1), 87-93.10.1007/s12239-009-0011-7
  • 38. Park, S.J., Kwon, T.H., 1998. Optimal cooling system design for the injection molding process. Polymer Engineering and Science, 38(9).10.1002/pen.10316
  • 39. Rahim, S.Z.A., Sharif, S., Zain, Z.M., Nasir, S.M., Saad, R.M., 2016. Improving the Quality and Productivity of Molded Parts with a New Design of Conformal Cooling Channels for the Injection Molding Process. Advances in Polymer Technology, 35(1).10.1002/adv.21524
  • 40. Saifullah, A.B.M., Masood, S.H., 2007. Optimum Cooling Channels Design and Thermal Analysis of an Injection Moulded Plastic Part Mould. Materials Science Forum, 561-565.10.4028/www.scientific.net/MSF.561-565.1999
  • 41. Tan, C., Wang, D., Ma, W.Y., Chen, Y.R,. Chen, S.J., Yang, Y.Q., Zhou, K., 2020. Design and additive manufacturing of novel conformal cooling molds. Materials & Design, 196.10.1016/j.matdes.2020.109147
  • 42. Torres-Alba, A., Mercado-Colmenero, J.M., de D. Caballero-Garcia, J., Martin-Doñate, C., 2021. Application of New Triple Hook-Shaped Conformal Cooling Channels for Cores and Sliders in Injection Molding to Reduce Residual Stress and Warping in Complex Plastic Optical Parts. Polymers, 13.10.3390/polym13172944843402734502983
  • 43. Torres-Alba, A., Mercado-Colmenero, J.M., Diaz-Perete, D., Martin-Doñate, C., 2020. A New Conformal Cooling Design Procedure for Injection Molding Based on Temperature Clusters and Multidimensional Discrete Models. Polymers, 12.10.3390/polym12010154702305131936100
  • 44. Wang, Y., Yu, K.M.,. Wang. C.C.L, Zhang, Y., 2011. Automatic design of conformal cooling circuits for rapid tooling. Computer-Aided Design, 43(8), 1001-1010.10.1016/j.cad.2011.04.011
  • 45. Wang, Y., Yu, M.K., Wang, C.C.L., 2015. Spiral and conformal cooling in plastic injection molding. Computer-Aided Design, 63, 1-11.10.1016/j.cad.2014.11.012
  • 46. Wang, Y., Yu, M.K., Wang, C.C.L., Zhang, Y., 2011. Automatic design of conformal cooling circuits for rapid tooling. Computer-Aided Design, 43(8), 1001-1010.10.1016/j.cad.2011.04.011
  • 47. Wu, T., Jahan, S.A., Kumaar, P., Tovar, A., El-Mounayri, H., Zhang, Y., Zhang, J., Acheson, D., Brand, K., Nalim, R., 2015. A Framework for Optimizing the Design of Injection Molds with Conformla Cooling for Additice Manufacturing. Procedia Manufactruing, 404-415.10.1016/j.promfg.2015.09.049
  • 48. Wu, T., Tovar, A., 2018. Design for Additive Manufacturing of Conformal Cooling Channels Using Thermal-Fluid Topology Optimization and Application in Injection Molds. Proceedings of the ASME 2018 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. Quebec City, Canada.10.1115/DETC2018-85511
  • 49. Xu, X., Sach, E., Allen, S., 2004. The Design of Conformal Cooling Channels in Injection Moulding Tooling. Polymer Engineering and Science, 41(7), 1265-1279.10.1002/pen.10827
  • 50. Yasa, E., Poyraz, O., Cizioglu, N., Pilatin, S., 2015. Repair and Manufacturing of High Performance Tools by Additive Manufacturing. 8th International Conference and Exhibition on Design and Production of MACHINES and DIES/MOLDS. Kusadasi, Aydin, TURKEY.
  • 51. Zhang, Y.M., Hou, B.K., Wang, Q., Li, Y., Huang, Z.G., 2017. Automatic design of conformal cooling channels in injection molding tooling. International Conference on Mechanical Engineering and Applied Composite Materials. Hong Kong.10.1088/1757-899X/307/1/012025
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-576d2e33-8305-4ebe-aa7c-45de0bc4d6b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.