PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Initial results on the development of niobium plasma carburizing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this work is to present the main initial results on the development of the niobium plasma carburizing process. Design/methodology/approach: The development of a new pulsed direct current power supply plasma assisted thermo-chemical treatment process for niobium. Findings: Niobium plasma carburizing can be successfully carried out, and niobium carbide phases can be obtained in the treated surface. Research limitations/implications: The risk of arc formation during the surface treatment can be overcome by optimizing the discharge geometry. Practical implications: The highly reactive plasma atmosphere is an advantage regarding the other conventional treatment processes. Originality/value: It is a new process development, and in this moment it is being considered to be patented in Brazil by the authors.
Rocznik
Strony
5--14
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
  • Department of Mechanical Engineering, Plasma Assisted Manufacturing Technology & Powder Metallurgy Group, Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
autor
  • Materials Science and Engineering Post-Graduation Program (PIPE), Plasma Assisted Manufacturing Technology & Powder Metallurgy Group, Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
Bibliografia
  • [1] B. Chapman, Glow discharge processes: sputtering and plasma etching, Wiley-Interscience, New York- Chichester-Brisbane-Toronto-Singapore, 1980.
  • [2] A. Ricard, Reactive plasmas, Société Française du Vide, Plasmas Reactifs, France, 1995, 156.
  • [3] Y.P. Raizer, Gas Discharge Physics, Corrected 2nd Printing, Springer Verlag, Berlin-Germany, 1997.
  • [4] J.R. Roth, Industrial Plasma Engineering, The Institute of Physics Volume 1: Principles, Institute of Physics Publishing, Bristol-Philadelphia, 1995.
  • [5] V.A. Engel, Ionized Gases. Second Edition, American Institute of Physics, New York-USA, 1965.
  • [6] A.N. Allenstein, R.P. Cardoso, K.D. Machado, S. Weber, K.M.P. Pereira, C.A.L. dos Santos, Z. Panossian, A.J.A. Buschinelli, S.F. Brunatto, Strong evidences of tempered martensite-to-nitrogen-expanded austenite transformation in CA-6NM steel, Materials Science and Engineering A 552 (2012) 569-572.
  • [7] C.J. Scheuer, R.P. Cardoso, R. Pereira, M. Mafra, S.F. Brunatto, Low temperature plasma carburizing of martensitic stainless steel, Materials Science and Engineering A 539 (2012) 369-372.
  • [8] C.J. Scheuer, R.P. Cardoso, F.I. Zanetti, T. Amaral, S.F. Brunatto, Low-temperature plasma carburizing of AISI 420 martensitic stainless steel: Influence of gas mixture and gas flow rate, Surface and Coatings Technology 206 (2012) 5085-5090.
  • [9] C.J. Scheuer, R.P. Cardoso, M. Mafra, S.F. Brunatto, AISI 420 martensitic stainless steel low temperature plasma assisted carburizing kinetics, Surface and Coatings Technology 214 (2013) 30-37.
  • [10] A.N. Allenstein, C.M. Lepienski, A.J.A. Buschinelli, S.F. Brunatto, Improvement of the cavitation erosion resistance for low-temperature plasma nitrided CA-6NM martensitic stainless steel, Wear 309 (2014) 159-165.
  • [11] A.N. Allenstein, C.M. Lepienski, A.J.A. Buschinelli, S.F. Brunatto, Plasma nitriding using high H2 content gas mixtures for a cavitation erosion resistant steel, Applied Surface Science 277 (2013) 15-24.
  • [12] A.N. Klein, R.P. Cardoso, H.C. Pavanati, C. Binder, A.M. Maliska, G. Hammes, D. Fusão, A. Seeber, S.F. Brunatto, J.L.R. Muzart, DC plasma technology applied to powder metallurgy: an overview, Plasma Science and Technology 15(1) (2013) 70-81.
  • [13] S.F. Brunatto, J.L.R. Muzart, Influence of the gas mixture flow on the processing parameters of hollow cathode discharge iron sintering, Journal of Physics D: Applied Physics 40 (2007) 3937-3944.
  • [14] R.S. Mason, R.M. Allott, The Theory of Cathodic Bombardment in a Glow Discharge by Fast Neutrals, Journal of Physics D: Applied Physics 27 (1994) 2372-2378.
  • [15] I. Abril, A. Gras Marti, Energy Transfer Processes in Glow Discharges, Journal of Vacuum Science & Technology A 4/3 (1986) 1773-1778.
  • [16] R.S. Mason, M. Pichilingi, Sputtering in a Glow Discharge Ion Source - Pressure Dependence: Theory and Experiment, Journal of Physics D: Applied Physics 27 (1994) 2363-2371.
  • [17] C. Borcz, C.M. Lepienski, S.F. Brunatto, Surface modification of pure niobium by plasma nitriding. Surface and Coatings Technology 224 (2013) 114-119.
  • [18] A.V. Linde, V.V. Grachev, R.-M. Marin-Ayral, Selfpropagating high-temperature synthesis of cubic niobium nitride under high pressures of nitrogen, Chemical Engineering Journal 155 (2009) 542-547.
  • [19] R. Musenich, P. Fabbricatore, G. Gemme, R. Parodi, M. Viviani, B. Zhang, V. Buscaglia, C. Bottino, Growth of niobium nitrides by nitrogen-niobium reaction at high temperature, Journal of alloys and compounds 209 (1994) 319-328.
  • [20] P.M. Amaral, J.C. Fernandes, L.G. Rosa, D. Martõ nez, J. Rodrõ guez, N. Shohoji, X-ray diffraction characterization of carbide and carbonitride if Ti and Zr prepared through reaction between metal powders and carbon powders in a solar furnace, International Journal of Refractory Metals and Hard Materials 17 (2000) 437-443.
  • [21] W. Wang, Z. Xu, Z. He, Z. Wang, P. Zhang, Study on double-glow plasma niobium surface alloying of pure titanium, Vacuum 81 (2007) 937-942.
  • [22] Q. Wang, P.Z. Zhang, D.B. Wei, X.H. Chen, R.N. Wang, H. Wang, K. Feng, Microstructure and sliding wear behavior of pure titanium surface modified by double-glow plasma surface alloying with Nb, Materials & Design 52 (2013) 265-273.
  • [23] U. Sen, S.S. Pazarlõoglu, S. Sen, Niobium boride coating on AISI M2 steel by boro-niobizing treatment, Materials letters 62 (2008) 2444-2446.
  • [24] G.A. Fontalvo, V. Terziyska, C. Mitterer, Hightemperature tribological behaviour of sputtered NbNx thin films, Surface and Coatings Technology 202 (2007) 1017-1022.
  • [25] I. Jauberteau, J.L. Jauberteau, M.N. Semeria, Plasma nitriding of thin molybdenum layers at low temperature, Surface and Coatings Technology 116 (1999) 222-228.
  • [26] I. Jauberteau, J.L. Jauberteau, P. Goudeau, Investigations on a nitriding process of molybdenum thin films exposed to (Ar-N2-H2) expanding microwave plasma, Surface and Coatings Technology 203 (2009) 1127-1132.
  • [27] S.F. Brunatto, A.N. Allenstein, C.L.M. Allenstein, Cavitation erosion behaviour of niobium, Wear 274 (2012) 220-228.
  • [28] ASM International Handbook Committee, ASM Handbook Volume 2, 10th ed., 1990.
  • [29] L. Wang, J. Sun, J. Sun, Y. Lv, S. Li, S. Ji, Z. Wen, Niobium nitride modified AISI 304 stainless steel bipolar plate for proton exchange membrane fuel cell, Journal of Power Sources 199 (2012) 195-200.
  • [30] W.D. Wilkinson, Fabrication of Refractory Metals. No. TID-25424, 1970.
  • [31] J.J. Olaya, L. Huerta, S.E. Rodil, R. Escamilla, Superconducting niobium nitride films deposited by unbalanced magnetron sputtering, Thin Solid Films 516 (2008) 8768-8773.
  • [32] Y. Gotoh, M. Nagao, T. Ura, H. Tsuji, J. Ishikawa, Ion beam assisted deposition of niobium nitride thin films for vacuum microelectronics devices, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 148 (1999) 925-929.
  • [33] N. Cansever, Properties of niobium nitride coatings deposited by cathodic arc physical vapor deposition, Thin Solid Films 515 (2007) 3670-3674.
  • [34] G. Ramírez, S.E. Rodil, H. Arzate, S. Muhl, J.J. Olaya, Niobium based coatings for dental implants, Applied Surface Science 257 (2011) 2555-2559.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-576c62fa-8e33-4a5b-82a3-d6c0a3cb915e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.