PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modular-based multifunctional product design made from furniture waste toward the circular economy: case in Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The furniture industry is one of the industrial sectors that has a potential market in Indonesia. This industry requires a lot of wood raw materials but is faced with a wood legality verification system that limits raw materials. Industrial players still need to start using waste as raw materials, which will reduce the use of primary raw materials. The circular economy concept can be applied to waste treatment. This study aims to design a pump-gallon product made from waste, considering the relatively high level of gallon container consumption. With this design, it is hoped to utilize waste into economically valuable products while reducing the environmental impact it causes. The product design process uses an integrated QFD-TRIZ method combined with circular economy principles. QFD functions to determine consumer desires and make technical responses, while TRIZ resolves contradictions in technical responses. The circular economy attribute is used as a reference in making gallon pump products from wood waste. After the design process is complete, it is followed by an economic feasibility analysis using the cost-benefit ratio. The result of this research is the design of multifunctional and modular products for gallon pumps. The gallon storage is designed to store not only gallons but also a small table for placing dirty glass and a drawer at the bottom that can be used to keep the glass or other items. There is a detachable system between the upper and lower components, making it easier to repair and use. At the bottom, they mounted castor wheels to facilitate product movement. Designing products made from waste will increase the income of furniture SMEs. In addition, it is expected that this will overcome waste management problems and shortages of raw materials experienced by furniture SMEs. Future research can utilize powder and smaller pieces of wood.
Wydawca
Rocznik
Tom
Strony
303--316
Opis fizyczny
Bibliogr. 69 poz., rys., tab.
Twórcy
  • Diponegoro University Department of Industrial Engineering Jl. Prof. Soedarto, Tembalang, Semarang Central Java, Indonesia, 50275
autor
  • Diponegoro University Department of Industrial Engineering Jl. Prof. Soedarto, Tembalang, Semarang Central Java, Indonesia, 50275
  • Diponegoro University Department of Industrial Engineering Jl. Prof. Soedarto, Tembalang, Semarang Central Java, Indonesia, 50275
  • Universitas Dian Nuswantoro Department of Industrial Engineering Jl. Imam Bonjol 207, Semarang Central Java, Indonesia, 50131
  • Diponegoro University Department of Industrial Engineering Jl. Prof. Soedarto, Tembalang, Semarang Central Java, Indonesia, 50275
Bibliografia
  • [1] Z. Salim and E. Munadi, “Info Komoditi Furnitur,” Badan Pengkaj. dan Pengemb. Perdagang. Kementeri. Perdagang. Republik Indones., 2017.
  • [2] Pijar Sukma, “4 Greatest Asian Exporting Countries for (Wooden) Furniture Manufacture,” 2020. https://pijarsukma-furniture.com/furniture-manufacturers-asia/ (accessed Dec. 12, 2023).
  • [3] N. Chang, “2022 Global Wooden Furniture Export Summary,” 2022. https://www.ptgofada.com/post/2022-global-wooden-furniture-export-summary (accessed Dec. 12, 2023).
  • [4] S. Nurkomariyah, M. Firdaus, D.R. Nurrochmat, and J.T. Erbaugh, “Questioning The Competitiveness of Indonesian Wooden Furniture in The Global Market,” IOP Conf. Ser. Earth Environ. Sci., vol. 285, no. 1, p. 012015, May 2019, doi: 10.1088/1755-1315/285/1/012015.
  • [5] AMKRI, “Roadmap Industri Mebel dan Kerajinan Indonesia ‘Target Pencapaian Ekspor 5 Milyar USD, Jakarta, 2015.
  • [6] Ministry of Industry, “Data Statistik Industri Furnitur,” 2017.
  • [7] KLHK, “Statistik Kementerian Lingkungan Hidup Dan Kehutanan 2014.”, Jakarta, 2015.
  • [8] A.C. Ewasechko, Upgrading the Central Java wood furniture industry: a value-chain approach. ILO-SRO, 2005.
  • [9] O. Panchenko, M. Domashenko, O. Lyulyov, N. Dalevska, T. Pimonenko, and N. Letunovska, “Objectivation of the Ecological and Economic Losses from Solid Domestic Waste at the Heating Enterprises,” Manag. Syst. Prod. Eng., vol. 29, no. 3, pp. 235-241, 2021, doi: 10.2478/mspe-2021-0029.
  • [10] J. Dyczkowska, Y. Bulhakova, Z. Łukaszczyk, and A. Maryniak, “Waste Management as an Element of the Creation of a Closed Loop of Supply Chains on the Example of Mining and Extractive Industry,” Manag. Syst. Prod. Eng., vol. 28, no. 1, pp. 60-69, 2020, doi: 10.2478/mspe-2020-0010.
  • [11] A. Forrest, M. Hilton, A. Ballinger, and D. Whittaker, “Circular economy opportunities in the furniture sector,” Eur. Environ. Bur. Brussels, Belgium, 2017.
  • [12] J. Kirchherr, D. Reike, and M. Hekkert, “Conceptualizing the circular economy: An analysis of 114 definitions,” Resour. Conserv. Recycl., vol. 127, pp. 221-232, 2017.
  • [13] M.C. Den Hollander, C.A. Bakker, and E.J. Hultink, “Product design in a circular economy: Development of a typology of key concepts and terms,” J. Ind. Ecol., vol. 21, no. 3, pp. 517-525, 2017.
  • [14] A. Wiśniewska-Sałek, “Managing a Sustainable Supply Chain-Statistical Analysis of Natural Resources in the Furniture Industry,” Manag. Syst. Prod. Eng., vol. 29, no. 3, pp. 227-234, 2021, doi: 10.2478/mspe-2021-0028.
  • [15] Y. Akao, Quality function deployment: integrating customer requirements into product design. SteinerBooks, 2004.
  • [16] J.B. Revelle, J.W. Moran, and C.A. Cox, The QFD handbook. John Wiley & Sons, 1998.
  • [17] B. Bergman and B. Klefsjö, Quality from customer needs to customer satisfaction. Studentlitteratur AB, 2010.
  • [18] E. Vezzetti, S. Moos, and S. Kretli, “A product lifecycle management methodology for supporting knowledge reuse in the consumer packaged goods domain,” Comput. Des., vol. 43, no. 12, pp. 1902-1911, 2011.
  • [19] C. Rao, X. Xiao, M. Goh, J. Zheng, and J. Wen, “Compound mechanism design of supplier selection based on multi-attribute auction and risk management of supply chain,” Comput. Ind. Eng., vol. 105, pp. 63-75, 2017.
  • [20] C. Yang, J. Cheng, and X. Wang, “Hybrid quality function deployment method for innovative new product design based on the theory of inventive problem solving and Kansei evaluation,” Adv. Mech. Eng., vol. 11, no. 5, p. 1687814019848939, 2019.
  • [21] J. A. Carnevalli and P. C. Miguel, “Review, analysis and classification of the literature on QFD – Types of research, difficulties and benefits,” Int. J. Prod. Econ., vol. 114, no. 2, pp. 737-754, 2008.
  • [22] M. Fargnoli and T. Sakao, “Uncovering differences and similarities among quality function deployment-based methods in Design for X: Benchmarking in different domains,” Qual. Eng., vol. 29, no. 4, pp. 690-712, 2017.
  • [23] S. Dror, “Improving business objectives by reducing testing in the transition from development to production,” Qual. Reliab. Eng. Int., vol. 36, no. 6, pp. 2108-2118, 2020.
  • [24] W. Yang, G. Cao, Q. Peng, and Y. Sun, “Effective radical innovations using integrated QFD and TRIZ,” Comput. Ind. Eng., vol. 162, p. 107716, 2021.
  • [25] D. D. Sheu, M.-C. Chiu, and D. Cayard, “The 7 pillars of TRIZ philosophies,” Comput. Ind. Eng., vol. 146, p. 106572, 2020.
  • [26] C. Leonid, E. Kalle, and L. Mika, “TRIZ Integration into a Product Design Roadmap,” in Proceedings of the 25th international conference on flexible automation and intelligent manufacturing, 2015, pp. 198-205.
  • [27] S.-M. Wu, H.-C. Liu, and L.-E. Wang, “Hesitant fuzzy integrated MCDM approach for quality function deployment: a case study in electric vehicle,” Int. J. Prod. Res., vol. 55, no. 15, pp. 4436-4449, 2017.
  • [28] A.A. Bolar, S. Tesfamariam, and R. Sadiq, “Framework for prioritizing infrastructure user expectations using Quality Function Deployment (QFD),” Int. J. Sustain. Built Environ., vol. 6, no. 1, pp. 16-29, 2017.
  • [29] T.T. Sousa-Zomer and P.A.C. Miguel, “A QFD-based approach to support sustainable product-service systems conceptual design,” Int. J. Adv. Manuf. Technol., vol. 88, pp. 701-717, 2017.
  • [30] C.K.M. Lee, C.T.Y. Ru, C.L. Yeung, K.L. Choy, and W. H. Ip, “Analyze the healthcare service requirement using fuzzy QFD,” Comput. Ind., vol. 74, pp. 1-15, 2015.
  • [31] I. Vanany, G.A. Maarif, and J.M. Soon, “Application of multi-based quality function deployment (QFD) model to improve halal meat industry,” J. Islam. Mark., vol. 10, no. 1, pp. 97-124, 2019.
  • [32] L. Chechurin and Y. Borgianni, “Understanding TRIZ through the review of top cited publications,” Comput. Ind., vol. 82, pp. 119-134, 2016.
  • [33] S. Ren, F. Gui, Y. Zhao, Z. Xie, H. Hong, and H. Wang, “Accelerating preliminary low-carbon design for products by integrating TRIZ and Extenics methods,” Adv. Mech. Eng., vol. 9, no. 9, p. 1687814017725461, 2017.
  • [34] H.T. Hsieh and J.L. Chen, “Using TRIZ methods in friction stir welding design,” Int. J. Adv. Manuf. Technol., vol. 46, pp. 1085-1102, 2010.
  • [35] C.J. Yang and J.L. Chen, “Accelerating preliminary eco-innovation design for products that integrates case-based reasoning and TRIZ method,” J. Clean. Prod., vol. 19, no. 9-10, pp. 998-1006, 2011.
  • [36] V. Nikolić, S. Sajjadi, D. Petković, S. Shamshirband, Ž. Ćojbašić, and L.Y. Por, “Design and state of art of innovative wind turbine systems,” Renew. Sustain. Energy Rev., vol. 61, pp. 258-265, 2016.
  • [37] P. Števko, R. Kohár, D. Cechmánek, D. Medvecká, and F. Nový, “Optimization of the Tire Building Drum for Passenger Tires Using the TRIZ Methodology,” Manag. Syst. Prod. Eng., vol. 31, no. 3, pp. 361-372, 2023, doi: 10.2478/mspe-2023-0040.
  • [38] G. Caligiana, A. Liverani, D. Francia, L. Frizziero, and G. Donnici, “Integrating QFD and TRIZ for innovative design,” J. Adv. Mech. Des. Syst. Manuf., vol. 11, no. 2, 2017, doi: 10.1299/jamdsm.2017jamdsm0015.
  • [39] T. Kim, H. Lim, and K. Cho, “Conceptual robot design for the automated layout of building structures by integrating QFD and TRIZ,” Int. J. Adv. Manuf. Technol., vol. 120, no. 3-4, pp. 1793-1804, May 2022, doi: 10.1007/s00170-022-08803-2.
  • [40] E.L. Melgoza, L. Serenó, A. Rosell, and J. Ciurana, “An integrated parameterized tool for designing a customized tracheal stent,” Comput. Des., vol. 44, no. 12, pp. 1173-1181, 2012.
  • [41] C.-H. Wang, “Incorporating the concept of systematic innovation into quality function deployment for developing multi-functional smart phones,” Comput. Ind. Eng., vol. 107, pp. 367-375, 2017.
  • [42] Y.-H. Wang, C.-H. Lee, and A. J. C. Trappey, “Service design blueprint approach incorporating TRIZ and service QFD for a meal ordering system: A case study,” Comput. Ind. Eng., vol. 107, pp. 388-400, 2017.
  • [43] F. Li, C.-H. Chen, C.-H. Lee, and L.-P. Khoo, “A user requirement-driven approach incorporating TRIZ and QFD for designing a smart vessel alarm system to reduce alarm fatigue,” J. Navig., vol. 73, no. 1, pp. 212-232, 2020.
  • [44] C.H. Yeh, J.C.Y. Huang, and C.K.Yu, “Integration of four-phase QFD and TRIZ in product R&D: a notebook case study,” Res. Eng. Des., vol. 22, pp. 125-141, 2011.
  • [45] F. Zhang, M. Yang, and W. Liu, “Using integrated quality function deployment and theory of innovation problem solving approach for ergonomic product design,” Comput. Ind. Eng., vol. 76, pp. 60-74, 2014.
  • [46] I. Ekmekci and E.E. Nebati, “Triz Methodology and Applications,” Procedia Comput. Sci., vol. 158, pp. 303-315, 2019.
  • [47] T. Bhamra and V. Lofthouse, Design for Sustainability: A Practical Approach. United Kingdom: Routledge, 2007.
  • [48] W.R. Stahel, The Performance Economy, 2nd ed. England: Palgrave Macmillan, 2010.
  • [49] N.M.P. Bocken, I. de Pauw, C. Bakker, and B. van der Grinten, “Product design and business model strategies for a circular economy,” J. Ind. Prod. Eng., vol. 33, no. 5, pp. 308-320, Jul. 2016, doi: 10.1080/21681015.2016.1172124.
  • [50] P. Ghisellini, C. Cialani, and S. Ulgiati, “A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems,” J. Clean. Prod., vol. 114, pp. 11-32, 2016.
  • [51] M. Tonelli and N. Cristoni, Strategic management and the circular economy. Routledge, 2018.
  • [52] T. Cooper, “Product development implications of sustainable consumption,” Des. J., vol. 3, no. 2, pp. 46-57, 2000.
  • [53] E. MacArthur, “Towards the circular economy,” J. Ind. Ecol., vol. 2, pp. 23-44, 2013.
  • [54] C. Vezzoli and E. Manzini, Design for environmental sustainability. Springer, 2008.
  • [55] J.M. Allwood, M.F. Ashby, T.G. Gutowski, and E. Worrell, “Material efficiency: A white paper,” Resour. Conserv. Recycl., vol. 55, no. 3, pp. 362-381, 2011.
  • [56] D.W. Hosmer, T. Hosmer, S. Le Cessie, and S. Lemeshow, “A comparison of goodness‐of‐fit tests for the logistic regression model,” Stat. Med., vol. 16, no. 9, pp. 965-980, 1997.
  • [57] I. Ghozali, Aplikasi analisis multivariate dengan program SPSS. Badan Penerbit Universitas Diponegoro, 2006.
  • [58] R. Ginting and A. Y. Ali, “TRIZ or DFMA combined with QFD as product design methodology: A review,” 2016.
  • [59] H.-F. Hung, H.-P. Kao, and Y.-S. Juang, “An integrated information system for product design planning,” Expert Syst. Appl., vol. 35, no. 1-2, pp. 338-349, 2008.
  • [60] X. Lai, K. Tan, and M. Xie, “Optimizing product design using quantitative quality function deployment: a case study,” Qual. Reliab. Eng. Int., vol. 23, no. 1, pp. 45-57, 2007.
  • [61] S. Vinodh, V. Kamala, and K. Jayakrishna, “Integration of ECQFD, TRIZ, and AHP for innovative and sustainable product development,” Appl. Math. Model., vol. 38, no. 11-12, pp. 2758-2770, 2014.
  • [62] K. Purushothaman and R. Ahmad, “Integration of Six Sigma methodology of DMADV steps with QFD, DFMEA and TRIZ applications for image-based automated inspection system development: a case study,” Int. J. Lean Six Sigma, vol. 13, no. 6, pp. 1239-1276, 2022.
  • [63] J. Zhang, K.-H. Chai, and K.-C. Tan, “40 inventive principles with applications in service operations management,” TRIZ J., vol. 8, no. 12, p. 1, 2003.
  • [64] M. Chaerul and S.A. Rahayu, “Cost Benefit Analysis for Developing Municipal Solid Waste Treatment Facility: Case Study of Pekanbaru City,” J. Nat. Resour. Environ. Manag., vol. 9, no. 3, pp. 710-722, 2019.
  • [65] P. Misuraca, “The effectiveness of a costs and benefits analysis in making Federal Government decisions: A literature review,” Cent. Natl. Secur. MITRE Corp., 2014.
  • [66] C. Ghinea and M. Gavrilescu, “Costs analysis of municipal solid waste management scenarios: IASI–Romania case study,” J. Environ. Eng. Landsc. Manag., vol. 24, no. 3, pp. 185-199, 2016.
  • [67] A. Ahamed, K. Yin, B.J.H. Ng, F. Ren, V.-C. Chang, and J.-Y. Wang, “Life cycle assessment of the present and proposed food waste management technologies from environmental and economic impact perspectives,” J. Clean. Prod., vol. 131, pp. 607-614, 2016.
  • [68] V. Martinez-Sanchez, M.A. Kromann, and T.F. Astrup, “Life cycle costing of waste management systems: Overview, calculation principles and case studies,” Waste Manag., vol. 36, pp. 343-355, 2015.
  • [69] K. Dobraja, A. Barisa, and M. Rosa, “Cost-benefit analysis of integrated approach of waste and energy management,” Energy Procedia, vol. 95, pp. 104-111, 2016.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5767dfce-2165-4750-b684-d1e4439753ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.