PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of computed tomography to assess quality and structure of curved CFRP laminate samples produced by autoclave technology

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Carbon fiber reinforced polymer (CFRP) composite laminates are widely used in parts with complex shapes with different curvatures. The curved regions are susceptible to the occurrence of manufacturing defects and premature in-service damage, thus the nondestructive inspection (NDI) of the curved regions is an important issue. X-ray computed tomography (CT) was used to assess the structure of CFRP composite laminate curved beams with different curvature geometry produced in the autoclave technology. The performed inspection allowed visualization of the structure of the curvatures on the ply level and the detection of defects such as foreign objects, voids, resin rich regions, wrinkles and changes in thickness. Also, the quantitative assessment of the defects and distances between the adjacent layers was carried out. The performed investigations show that X-ray CT is an adequate tool to visualize curved CFRP structures.
Rocznik
Strony
72--77
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • WB Centrum Kompozytów sp. z o.o., ul. Nad Białką 25, 43-502 Czechowice Dziedzice, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Mechanical Engineering, ul. S. Konarskiego 18A, 44-100 Gliwice, Poland
  • Silesian University of Technology, Faculty of Mechanical Engineering, ul. S. Konarskiego 18A, 44-100 Gliwice, Poland
Bibliografia
  • 1. Wu C., Xu F., Wang H., Liu H., Yan F., Ma C., Manufacturing technologies of polymer composites – A review, Polymers 2023, 15, 712, DOI: 10.3390/polym15030712.
  • 2. Koniuszewska A., Naplocha K., Kaczmar J.W., Zastosowanie lekkich elementów z kompozytów polimerowych i metalowych w budowie środków transportu, TTS Technika Transportu Szynowego 2015, 22, 12, 2650-2656.
  • 3. Muhammad A., Rahman M.R., Baini R., Bin Bakri M.K., Applications of sustainable polymer composites in automobile
  • and aerospace industry, Advances in Sustainable Polymer Composites 2021, 185-207, DOI: 10.1016/b978-0-12-820338-5.00008-4.
  • 4. Mallick P.K., Fiber-Reinforced Composites, Materials, Manufacturing, and Design, 3rd ed., CRC Press, Boca Raton 2007, DOI: 10.1201/9781420005981.
  • 5. Królikowski W., Polimerowe kompozyty konstrukcyjne, Wydawnictwo Naukowe PWN, Warszawa 2012.
  • 6. Hubert P., Fernlund G., Poursartip A., Autoclave processing for composites, Manufacturing Techniques for Polymer Matrix Composites (PMCs), Woodhead Publishing Series in Composites Science and Engineering 2012, 414-434, DOI:10.1533/9780857096258.3.414.
  • 7. Kozioł M., Mechanical performance of GFRP laminates manufactured from deformed stitched and three-dimensional woven preforms, Journal of Composite Materials 2016, 50, 19, 2617-2631, DOI: 10.1177/0021998315609975.
  • 8. Chiang Y.-Ch., Curved laminate analysis, Structural Engineering and Mechanics 2011, 39, 2, 169-186, DOI:10.12989/sem.2011.39.2.169
  • 9. Figlus T., Kozioł M., Kuczyński Ł., Impact of application of selected composite materials on the weight and vibroactivity of the upper gearbox housing, Materials 2019, 12, 2517, DOI: 10.3390/ma12162517.
  • 10. MIL-HDBK-17-3F: Department of Defense Handbook. Composite materials handbook. Volume 3. Polymer Matrix Coposites. Materials Usage, Design and Analysis, United States of America Department of Defense, 17 June 2002.
  • 11. Aggarwal M., Analysis of curved composite beam, Master Thesis, West Virginia University, Morgantown, December 2016.
  • 12. Kedward K.T., Wilson R.S., McLean S.K., Flexure of simply curved composite shapes, Composites 1989, 20, 6, 527-536, DOI: 10.1016/0010-4361(89)90911-7.
  • 13. Yavuz B.O., Parnas L., Coker D., Interlaminar tensile strength of different angle-ply CFRP composites, Procedia Structural Integrity 2019, 21, 198-205, DOI: 10.1016/j.prostr.2019.12.102.
  • 14. Martin R.H., Delamination failure in unidirectional curved composite laminate, NASA Contractor Report No. 182018, Hampton 1990, April.
  • 15. Zumaquero P.L., Justo J., Graciani E., On the thickness dependence of ILTS in curved composite laminates, Key Engineering Materials 2018 August, 774, 523-528, DOI:10.4028/www.scientific.net/KEM.774.523.
  • 16. Hassan M.H., Othman A.R., Kamaruddin S., A review on the manufacturing defects of complex-shaped laminate in
  • aircraft composite structures, The International Journal of Advanced Manufacturing Technology 2017, 91, 4081-4094, DOI: 10.1007/s00170-017-0096-5.
  • 17. Netzel C., Mordasini A., Schubert J., Allen T., Battley M., Hickey C.M.D., Hubert P., Bickerton S., An experimental study of defect evolution in corners by autoclave processing of prepreg material, Composites Part A: Applied Science and Manufacturing 2021, May, 144, 106348, DOI:10.1016/j.compositesa.2021.106348.
  • 18. Azzouz R., Allaoui S., Moulart R., Composite preforming defects: a review and a classification, International Journal of Material Forming 2021, 14, 1259-1278, DOI:10.1007/s12289-021-01643-7.
  • 19. Seon G., Makeev A., Nikishkov Y., Lee E., Effects of defects on interlaminar tensile fatigue behavior of carbon/ epoxy composites, Composites Science and Technology2013, December, 89, 194-201, DOI: 10.1016/j.compscitech. 2013.10.006.
  • 20. Hakim I.A., Donaldson S.L., Meyendorf N.G., Browning C.E., Porosity effects on interlaminar fracture behavior in carbon fiber-reinforced polymer composites, Materials Sciences and Applications 2017, July, 8, 2, 170-187, DOI:10.4236/msa.2017.82011.
  • 21. Costa M.L., M.de Almeida S.F., Rezende M.C., The influence of porosity on the interlaminar shear strength of carbon/ epoxy and carbon/bismaleimide fabric laminates, Composites Science and Technology 2001, November, 61, 14, 2101-2108, DOI: 10.1016/S0266-3538(01)00157-9.
  • 22. Bowles K.J., Frimpong S., Void effects on the interlaminar shear strength of unidirectional graphite-fiber-reinforced composites, Journal of Composite Materials 1992, 26, 10, 1487-1509, DOI: 10.1177/002199839202601006.
  • 23. Makeev A., Seon G., Nikishkov Y., Lee E., Methods for assessment of interlaminar tensile strength of composite materials, Journal of Composite Materials 2014, 49, 7, 783-794, DOI: 10.1177/0021998314525979.
  • 24. Salski B., Gwarek W., Korpas P., Reszewicz S., Chong A.Y.B., Theodorakeas P., Hatziioannidis I., Kappatos V., Selcuk C.,Gan T.-H., Koui M., Iwanowski M., Zielinski B., Nondestructive testing of carbon-fibre-reinforced polymer materials with a radio-frequency inductive sensor, Composite Structures 2015, 122, 104-112, DOI: 10.1016/j.compstruct. 2014.11.056.
  • 25. Wu D., Cheng F., Yang F., Huang C., Non-destructive testing for carbon-fiber-reinforced plastic (CFRP) using a novel eddy current probe, Composites Part B: Engineering 2019, November, 177, 107460, DOI: 10.1016/j.compositesb.2019.107460.
  • 26. Chen J., Yu Z., Jin H., Nondestructive testing and evaluation techniques of defects in fiber – reinforced polymer composites: A review, Frontiers in Materials 2022, 9, 986645, DOI: 10.3389/fmats.2022.986645.
  • 27. Landis E.N., Keane D.T., X-ray microtomography, Materials Characterization 2010, December, 61, 12, 1305-1316, DOI: 10.1016/j.matchar.2010.09.012.
  • 28. Garcea S.C., Wang Y., Withers P.J., X-ray computed tomography of polymer composites, Composites Science and Technology 2018 March, 156, 305-319, DOI: 10.1016/j.compscitech.2017.10.023.
  • 29. Gao Y., Hu W., Xin S., Sun L., A review of applications of CT imaging on fiber reinforced composites, Journal of Composite Materials 2022, January, 56, 1, 133-164, DOI:10.1177/00219983211050705.
  • 30. Nikishkov Y., Airoldi L., Makeev A., Measurement of voids in composites by X-ray computed tomography, Composites Science and Technology 2013, December, 89, 89-97, DOI:10.1016/j.compscitech.2013.09.019.
  • 31. Zwanenburg E.A., Norman D.G., Qian C., Kendall K.N., Williams M.A., Warnett J.M., Effective X-ray micro computed tomography imaging of carbon fibre composites, Composites Part B: Engineering 2023, June, 258, 110707,DOI: 10.1016/j.compositesb.2023.110707.
  • 32. Liu T., Malcolm A., Xu J., High-resolution X-ray CT inspection of honeycomb composites using planar computed tomography technology, 2nd Int. Symposium on NDT in Aerospace, Hamburg, Germany 22-24, November 2010.
  • 33. Vavrik D., Jakubek J., Jandejsek I., Krejci F., Kumpova I., Zemlicka J., Visualization of delamination in composite materials utilizing advanced X-ray imaging techniques, Journal of Instrumentation 2015, April, 10, DOI: 10.1088/1748-0221/10/04/C04012.
  • 34. Helizanowicz B., The use of thin-ply prepregs for the fiber reinforced polymer composites with small radius curvatures manufactured in the autoclave technology, Doctoral thesis, Faculty of Materials Engineering, Silesian University of Technology, Katowice 2023.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5764dcdb-28fa-46bc-8d5b-ecdbaf3872d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.