Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Bay and harbor resonances are investigated in this work, taking into account the variable bathymetry of the semi-enclosed basin. The Modified Mild-Slope (MMS) equation is implemented for the description of combined refraction-diffraction effects, from which the eigenperiods and eigenmodes are calculated by means of a low-order Finite Element Method (FEM scheme). The model is first applied to a coastal-port region of Toulon, France, illustrating the versatility of the model to easily include coastal structures such as detached breakwater. Next, the present model is applied to the extended nearshore area of Toulon including the Gulf of Giens showing the applicability of the developed MMS-FEM model for the estimation of harbor and bay resonances, as well as more extended nearshore regions where variable bottom topography effects become important. The calculated resonant frequency depends on the domain characteristics and the size of the open sea boundary and accurately reproduces the measurements within Toulon Bay. On the other hand, for open bays such as the Gulf of Giens, a discrepancy is observed between calculated and measured eigenperiods which is due to a very wide opening of the sea boundary that cannot accurately describe the seiching. This underlines the difficulty of accurately calculating the resonance frequency for open bays, in contrast to the classic studies carried out for ports, which are considered virtually closed basins, and confirms the complementary nature of long-term water level measurements and numerical calculations, for better quantification of the risks associated with energetic meteorological and/or oceanographic events.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
Art. no. 66402
Opis fizyczny
Bibliogr. 20 poz., fot., rys., tab., wykr.
Twórcy
autor
- School of Naval Architecture and Marine Engineering, National Technical University of Athens, Greece
autor
- Université de Toulon, Aix Marseille Université, CNRS, IRD, MIO, Toulon, France
Bibliografia
- 1. Athanassoulis, G.A., Belibassakis, K.A., Gerostathis, Th., 2002. The POSEIDON nearshore wave model and its application to the prediction of the wave conditions in the nearshore/coastal region of the Greek Seas. J. Atmos. Ocean Sci. 8(2-3), 101-117.
- 2. Bertin, X., De Bakker, A., Van Dongeren, A., Coco G., Andre, G., Ardhuin, F., Bonneton, P., Bouchette, F., Castelle, B., Crawford, W. C., Davidson, M., Deen, M., Dodet, G., Guerin, T., Inch, K., Leckler, F., Mccall, R., Muller, H., Olabarrieta, M., Roelvink, D., Ruessink, G., Sous, D., Stutzmann, E., Tissier, M., 2018. Infragravity waves: from driving mechanisms to impacts. Earth Sci. Rev. 177, 774-799. https://doi.org/10.1016/j.earscirev.2018.01.002
- 3. Chamberlain, P.G., Porter, D., 1995. The modified mild-slope equation. J. Fluid Mech. 291, 393-407.
- 4. Dufresne, Ch., Duffa, C., Rey, V., 2014. Wind-forced circulation model and water exchanges through the channel in the Bay of Toulon, Ocean Dynam. 64, 209-224. https://doi.org/10.1007/s10236-013-0676-3
- 5. Gao, J., Hou, L., Liu, Y., Shi, H., 2024. Influences of Bragg reflection on harbor resonance triggered by irregular wave groups. Ocean Eng. 305, 117941.
- 6. Gao, J., Ma, X., Chen, H., Zang ,J., Dong, G., 2021. On hydrodynamic characteristics of transient harbor resonance excited by double solitary waves. Ocean Eng. 219, 108345.
- 7. Gao, J., Ma, X., Dong, G., Chen, H., Liu, Q., Zang, J., 2021. Investigation on the effects of Bragg reflection on harbor oscillations. Coastal Eng. 170, 103977.
- 8. Gao, J., Ma X., Zang, J., Dong, G., Ma, X., Zhu, Y. , Zhou, L., 2020. Numerical investigation of harbor oscillations induced by focused transient wave groups. Coastal Eng. 158, 103670.
- 9. Gao, J., Shi, H., Zang, J., Liu, Y., 2023. Mechanism analysis on the mitigation of harbor resonance by periodic undulating topography. Ocean Eng. 281, 114923.
- 10. Heinrich, P., Gailler, A., Dupont, A., Rey, V., Hébert, H., Listowski, C., 2023. Observation and simulation of the meteotsunami generated in the Mediterranean Sea by the Tonga eruption on 15 Jan 2022, Geophys. J. Int. 234, 2, 903-914. https://doi.org/10.1093/gji/ggad092
- 11. Karathanasi, F., Karperaki, A., Gerostathis Th., Belibassakis K., 2020. Offshore-to-Nearshore Transformation of Wave Conditions and Directional Extremes with Application to Port Resonances in the Bay of Sitia-Crete. Atmosphere 11(3), 280.
- 12. Karperaki, A., Papathanasiou, T.K., Belibassakis, K.A., 2019. An optimized, parameter-free PML-FEM for wave scattering problems in the ocean and coastal environment. Ocean Eng. 179, 307-324.
- 13. Massel, S.R., 1993. Extended refraction-diffraction equation for surface waves. Coastal Eng. 19, 97-127. Mei, C.C., 1994. The applied dynamics of ocean surface waves. World Sci., Singapore, 768 pp.
- 14. Miles, J.W., Chamberlain, P.G., 1998. Topographical scattering of gravity waves. J. Fluid Mech. 361, 175-188.
- 15. Millot, C., Broyard, R., Metais, O., Tine, J., 1981. Les oscillations propres de la Rade de Toulon, Oceanologica Acta, 4(3), 259-262.
- 16. Rabinovich, A.B., 2009. Seiches and Harbor Oscillations. [In:] Handbook of Coastal and Ocean Engineering. Young, C.K. (ed.), World Sci., Singapore, 193-236.
- 17. Rey, V., Dufresne, C., Fuda, J. L., Mallarino, D., Missamou, T., Paugam, C., Rougier, G., Taupier-Letage, I. , 2020. On the use of long term observation of water level and temperature along the shore for a better understanding of the dynamics: Example of Toulon area, France, Ocean Dynam. 70, 913-933. https://doi.org/10.1007/s10236-020-01363-7
- 18. Rey, V., Paugam, C., Dufresne, C., Mallarino, D., Missamou, T., Fuda, J.L., 2022. Seiches à l’échelle de baies: origines et identification des périodes propres d’oscillations à partir des données d’observations sur le long termeen Provence à partir du réseau HTM-NET, XVIIème journées génie civil – génie côtier, Chatou, 11-13.
- 19. Vanem, E., 2017. A regional extreme value analysis of ocean waves in a changing climate. Ocean Eng. 144, 277-295.
- 20. Yalciner A.C., Pelinovsky E., 2006. A short cut numerical method for determination of periods of free oscillations for basins with irregular geometry and bathymetry. Ocean Eng. 34, 747-757
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5759de39-3960-41ef-ad8b-81b93e4fabfb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.