PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comprehensive approach to addressing oil spills from critical infrastructure accidents

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
17th Summer Safety & Reliability Seminars - SSARS 2023, 9-14 July 2023, Kraków, Poland
Języki publikacji
EN
Abstrakty
EN
This chapter presents a general approach to analyzing oil spills, which are frequently caused by critical infrastructure accidents. The definitions of critical infrastructure and complex system are given and the main sectors significant to the safety of industry operations are listed. The chapter underlines the importance of properly maintaining and monitoring shipping critical infrastructure to respond to potential accidents and ensuring the security of the people and goods transported. There are also presented different categories of oil spills, which can help responders to understand the scope of the problem and mitigate the effects of environmental damage if the oil discharges reach sensitive ecosystems or accumulate in large quantities. The application of useful mathematical models is described to support decision-making in oil spill response. The main factors affecting oil spill movement are listed, including the effects of hydro-meteorological conditions on predicting oil spill trajectory. Moreover, the development steps of constructing and verifying a proper probabilistic model for oil spill management are given. The chapter concludes by highlighting the need for further research in this area to improve our understanding of the complexity of the oil spill issue at the considered area
Twórcy
Bibliografia
  • Alcaraz, C. & Zeadally, S. 2015. Critical infrastructure protection: requirements and challenges for the 21st century. International Journal of Critical Infrastructure Protection 8, 53-66.
  • Asmussen, S. & Glynn, P.W. 2010. Stochastic Simulation: Algorithms and Analysis. Stochastic Modeling and Applied Probability 57. Springer, New York.
  • Barker, C.H., Kourafalou, V.H., Beegle-Krause, C.J., Boufadel, M., Bourassa, M.A., Buschang, S.G., Androulidakis, Y., Chassignet, E.P., Dagestad, K-F., Danmeier, D.G., Dissanayake, A.L., Galt, J.A., Jacobs, G., Marcotte, G., Özgökmen, T., Pinardi, N., Schiller, R.V., Socolofsky, S.A., Thrift-Viveros, D., Zelenke, B., Zhang, A. & Zheng. Y. 2020. Progress in operational modeling in support of oil spill response. Journal of Marine Science and Engineering 8, 668.
  • Bogalecka, M. 2020. Consequences of Maritime Critical Infrastructure Accidents. Environmental Impacts. Modeling - Identification - Prediction - Optimization - Mitigation. Elsevier, Amsterdam - Oxford - Cambridge.
  • Bogalecka, M. & Dąbrowska, E. 2023. Monte Carlo simulation approach to shipping accidents consequences assessment. Water 15, 1824.
  • Bogalecka, M. & Kołowrocki K. 2018a. Minimization of critical infrastructure accident losses of chemical releases impacted by climate-weather change. Proceeding of 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Institute of Electrical and Electronics Engineers (IEEE), Bangkok, 1657-1661.
  • Bogalecka, M. & Kołowrocki, K. 2018b. Prediction of critical infrastructure accident losses of chemical releases impacted by climate-weather change. Proceeding of 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Institute of Electrical and Electronics Engineers, Bangkok, 788-792.
  • COM. 2005. Green Paper on a European Programme for Critical Infrastructure Protection. Brussels 11.11.2005.
  • Council Directive. 2008. 2008/114/EC of 08 December 2008 on the identification and designation of European critical infrastructures and the assessment of the need to improve their protection. Official Journal of the European Union L. 345/75. 23.12.2008.
  • Dąbrowska, E. 2021. Conception of oil spill trajectory modelling: Karlskrona seaport area as an investigative example. Proceeding of 5th International Conference on System Reliability and Safety (ICSRS), Institute of Electrical and Electronics Engineers (IEEE), Palermo, 307-311.
  • Dąbrowska, E. 2022. Results comparison of analytical and simulation modelling of oil spill domain movement at port water area. Reliability: Theory & Applications 17, 3(66), 148-157.
  • Dąbrowska, E. 2023. Oil discharge trajectory simulation at selected Baltic Sea waterway under variability of hydro-meteorological conditions. Water 15, 1957.
  • Dąbrowska, E. & Kołowrocki, K. 2019a. Monte Carlo simulation applied to oil spill domain at Gdynia Port water area determination. Proceeding of 2019 IEEE International Conference on Information and Digital Technologies (IDT), Institute of Electrical and Electronics Engineers (IEEE), Žilina, 98-102.
  • Dąbrowska, E. & Kołowrocki, K. 2019b. Stochastic determination of oil spill domain at Gdynia Port water area. Proceeding of 2019 IEEE International Conference on Information and Digital Technologies (IDT), Institute of Electrical and Electronics Engineers (IEEE), Žilina, 92-97.
  • Dąbrowska, E. & Kołowrocki, K. 2020a. Monte Carlo simulation approach to determination of oil spill domains at port and sea waters areas. TransNav, International Journal on Marine Navigation and Safety of Sea Transportation 14 (1), 59-64.
  • Dąbrowska, E. & Kołowrocki, K. 2020b. Probabilistic approach to determination of oil spill domains at port and sea water areas, TransNav, International Journal on Marine Navigation and Safety of Sea Transportation 14 (1), 51-58.
  • DHS. 2015. Critical Infrastructure Security and Resilience, https://www.cisa.gov/critical-infrastructure-security-and-resilience (accessed 23 May 2023).
  • Drews, T.O., Braatz, R.D., Alkire, R.C. 2003. Parameter sensitivity analysis of Monte Carlo simulations of copper electrodeposition with multiple additives. Journal of the Electrochemical Society 150(11), C807-C812.
  • EC. 2022. Council Recommendation on a Coordinated Approach by the Union to Strengthen the Resilience of Critical Infrastructure, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52006PC0783 (accessed 23 May 2023).
  • Federal Communications Commission. 2023. What We Do, https://www.fcc.gov/about-fcc/what-we-do (accessed 23 May 2023).
  • Fingas, M. & Brown, C. 2014. Review of oil spill remote sensing. Marine Pollution Bulletin 83(1), 9-23.
  • Fingas, M. 2013. The Basics of Oil Spill Cleanup. 3rd ed. CRC Press, Boca Raton - London - New York.
  • Fingas, M. 2016. Oil Spill Science and Technology, 2nd ed. Elsevier, Amsterdam - Boston - Heidelberg - London - New York - Oxford - Paris - San Diego - San Francisco - Singapore - Sydney - Tokyo.
  • Food and Agriculture Organization of the United Nations. 2023. Food and Agriculture, https://www.fao.org/about/en/ (accessed 23 May 2023).
  • French-McCay, D., Rowe, J., Sankaranarayanan, S., Kim, S. & Aurand, D. 2005. Use of probabilistic trajectory and impact modelling to assess consequences of oil spills with various response strategies. Proceeding of the 28th Arctic and Marine Oil Spill Program (AMOP) Technical Seminar, Canada 253-271.
  • Ganguly, A.R., Bhatia, U. & Flynn, S.E. 2021. Critical Infrastructures Resilience Policy and Engineering Principles. 1st ed., Routledge, New York.
  • Goerlandt, F. & Montewka, J. 2015. Maritime transportation risk analysis: review and analysis in light of some foundational issues. Reliability Engineering & System Safety 138, 225-244.
  • Grabski, F. 2014. Semi-Markov Processes: Application in System Reliability and Maintenance. Elsevier, Amsterdam - Boston - Heidelberg - London - New York - Oxford - Paris - San Francisco - Sydney - Tokyo.
  • Gualda, D. 2014. Barcos Que Hicieron Historia. Smashwords Edition. Ediciones Discordia (in Spanish).
  • Guo, W., Wang, X., Liu, S., Kong, X., Wang, P. & Xu, T. 2022. Long-term petroleum hydrocarbons pollution after a coastal oil spill. Journal of Marine Science Engineering 10, 1380.
  • Harris, G. & Van Horn, R. 1996. Use of Monte Carlo Methods in Environmental Risk Assessment at the INEL: Application and Issues. Report 1 June 1996, Idaho Falls, Idaho. https://digital.library.unt.edu/ark:/67531/metadc671670/ (accessed 26 Jun 2023).
  • IMO. 2010. Manual on Oil Spill Risk Evaluation and Assessment of Response Preparedness. United Nations Educational, Scientific and Cultural Organization, IMI(02)/M294, London.
  • IMO. 2023. Definition of piracy. Article 101 of the 1982 United Nations Convention on the Law of the Sea (UNCLOS), https://www.imo.org/en/OurWork/Security/Pages/PiracyArmedRobberydefault.aspx (accessed 26 Jun 2023).
  • International Energy Agency. 2019. Energy Security. Reliable, Affordable Access to all Fuels and Energy Sources, https://www.iea.org/topics/energy-security (accessed 26 Jun 2023).
  • ITU. 2008. Series Y: Global Information Infrastructure, Internet Protocol Aspects and Next-Generation Networks. Next Generation Networks - Frameworks and functional architecture models, https://www.itu.int/rec/dologin_pub.asp?lang=s&id=T-REC-Y.2091-200802-S!!PDF-E&type=items (accessed 26 Jun 2023).
  • Ju, X., Li, Z., Dong, B., Meng, X. & Huang, S. 2022. Mathematical physics modelling and prediction of oil spill trajectory for a Catenary Anchor Leg Mooring (CALM) system. Advances in Mathematical Physics 2022, 3909552.
  • Kajitani, Y. & Sagai, S. 2009. Modelling the interdependencies of critical infrastructures during natural disasters: a case of supply, communication and transportation infrastructures. International Journal of Critical Infrastructures 5(1-2), 38-50.
  • Karakoc, D.B., Almoghathawi, Y., Barker, K., González, A.D. & Mohebbi, S. 2019. Community resilience-driven restoration model for interdependent infrastructure networks. International Journal of Disaster Risk Reduction, 38, 101228.
  • Kendra, J.M. & Wachtendorf, T. 2003. Elements of resilience after the World Trade Center disaster: reconstituting New York City’s emergency operations centre. Disasters 27(1), 37-53.
  • Kim, T., Yang, C.-S., Ouchi, K. & Oh, Y. 2013. Application of the method of moment and Monte-Carlo simulation to extract oil spill areas from synthetic aperture radar images. 2013 OCEANS-San Diego, 1-4.
  • Kołowrocki, K. & Soszyńska-Budny, J. 2011. Reliability and Safety of Complex Technical Systems and Processes: Modeling - Identification - Prediction - Optimization. Springer, London.
  • Kołowrocki, K. 2014. Reliability of Large and Complex Systems. Elsevier, Amsterdam - Boston - Heidelberg - London - New York - Oxford - Paris - San Diego - San Francisco - Singapore - Sydney - Tokyo.
  • Kołowrocki, K. & Kuligowska, E. 2018. Operation and climate-weather change impact on maritime ferry safety. Safety and Reliability – Safe Societies in a Changing World, S. Haugen et al. (Eds.), Taylor & Francis Group, London, 849-858.
  • Leigh, J.W. & Bryant, D. 2015. Monte Carlo strategies for selecting parameter values in simulation experiments. Systematic Biology 64(5), 741-751.
  • Liu, L., Li, W., Cui, Y., Hu, G. & Li, H. 2022. Simulating and predicting offshore oil spills by using cellular automata. Journal of Marine Science and Technology 30(3), 202-215.
  • Magryta, B. 2020. Reliability approach to resilience of critical infrastructure impacted by operation process. Journal of KONBiN 50(1), 131-153.
  • Magryta-Mut, B. 2023. Modeling safety of port and maritime transportation system. Scientific Journals of the Maritime University of Szczecin 74(146), 65-74.
  • Magryta, B. & Kołowrocki, K. 2020. Port oil terminal reliability optimization. Scientific Journals Maritime University of Szczecin, Zeszyty Naukowe Akademia Morska w Szczecinie, 62(134), 161-167.
  • Marseguerra, M. & Zio, E. 2002. Basics of the Monte Carlo Method with Application to System Reliability. LiLoLe-Verlag, Hagen.
  • McCreight, R. 2023. Gauging the impact of satellite & space systems on critical infrastructure [CI]: risk management is neither an enigma nor a mystery for CI systems security. Journal of Homeland Security and Emergency Management 20(2), 183-208.
  • Mitchell, P.L. & Sheehy, J.E. 1997. Comparison of predictions and observations to assess model performance: a method of empirical validation. Applications of Systems Approaches at the Field Level. Systems Approaches for Sustainable Agricultural Development 6, F.W.T Penning de Vries (Ed.), Springer, Dordrecht.
  • Montewka, J., Weckström, M. & Kujala, P. 2013. A probabilistic model estimating oil spill clean-up costs – a case study for the Gulf of Finland. Marine Pollution Bulletin 76(1-2), 61-71.
  • Munim, Z.H. & Schramm, H-J. 2018. The impacts of port infrastructure and logistics performance on economic growth: the mediating role of seaborne trade. Journal of Shipping and Trade 3, 1.
  • National Research Council. 2012. Disaster resilience: A national imperative. The National Academies Press, Washington.
  • NIPP. 2013. The National Infrastructure Protection Plan. Partnering for Critical Infrastructure Security and Resilience. Department of Homeland Security.
  • NOAA. 2023. National Oceanic and Atmospheric Administration. Oil spills. Oil types, https://response.restoration.noaa.gov/oil-and-chemical-spills/oil-spills/oil-types.html (accessed 26 Jun 2023).
  • Noble, P. 2019. Growth in the shipping industry: future projections and impacts. P.R. Boudreau et al. (Eds.). The Future of Ocean Governance and Capacity Development. Brill | Nijhoff, Leiden, 456-461.
  • Qiu, S., Ren, H., Li, H., Tao, R. & Zhou, Y. 2021. An improved particle number-based oil spill model using implicit viscosity in marine simulator. Mathematical Problems in Engineering 2021, 5545051.
  • Rao, M.S. & Naikan, V.N.A. 2016. Review of simulation approaches in reliability and availability modeling. International Journal of Performability Engineering 12(4), 369-388.
  • Tansel, B. 2014. Propagation of impacts after oil spills at sea: Categorization and quantification of local vs regional and immediate vs delayed impacts, International Journal of Disaster Risk Reduction 7, 1-8.
  • Tubielewicz, A., Forkiewicz, M. & Kowalczyk P. 2010. Planning of the seaports critical infrastructure protection in the light of the ISPS Code requirements. Scientific Journals of the Maritime University of Szczecin 24(96), 135-140.
  • U.S. Department of Homeland Security. 2023. Emergency services sector, https://www.cisa.gov/emergency-services-sector (accessed 26 Jun 2023).
  • U.S. Department of the Treasury. 2023. Financial Markets, Financial Institutions, and Fiscal Service, https://home.treasury.gov/policy-issues/financial-markets-financial-institutions-and-fiscal-service (accessed 26 Jun 2023).
  • U.S. Department of Transportation. 2017. Improving America Transportation Infrastructure Road Forward, https://www.transportation.gov/testimony/improving-america%E2%80%99s-transportation-infrastructure-road-forward (accessed 26 Jun 2023).
  • U.S. Government Accountability Office. 2020. Critical Infrastructure Protection, https://www.gao.gov/products/gao-23-106720 (accessed 26 Jun 2023).
  • UNCTAD. 2022. United Nations Conference on Trade and Development. Review of maritime transport 2022.
  • WHO. 2022. World Health Organization. Universal health coverage (UHC), https://www.who.int/news-room/fact-sheets/detail/universal-health-coverage-(uhc) (accessed 26 Jun 2023).
  • WTO. 2020. World Trade Organisation. Trade falls steeply in first half of 2020, https://www.wto.org/english/news_e/pres20_e/pr858_e.htm (accessed 26 Jun 2023).
  • Yuriy, D. & Dobrin, M. 2022. Oil spills weathering. Annals of Reviews & Research 8(1), 555730.
  • Zhang, Y. 2020. Sensitivity analysis in simulating oil slick using CA model, Ocean Engineering 218, 108216.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-575879ec-0018-4e42-9df4-c0ea50af85b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.