PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Crystallographic properties of the HgCdTe layers grown by MBE on CdZnTe(211)B substrates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A review of the specificity of the growth Hg₁-𝑥Cd𝑥Te layers by molecular beam epitaxy (MBE) and results of experimental studies of several Hg₁-𝑥Cd𝑥Te layers grown on Cd𝑦Zn1-𝑦Te (CZT) substrates are presented. It is well known that the performance of Hg₁-𝑥Cd𝑥Te -based detectors strongly depends on the substrate material and its orientation. CZT substrates are among the most commonly used due to their very good lattice match with Hg₁-𝑥Cd𝑥Te absorber material with different Cd content. In the present work, the authors focused on optimizing the MBE growth parameters in order to obtain the best possible crystalline quality of Hg₁-𝑥Cd𝑥Te layers grown on CZT substrates with (211)B orientation, in particular in terms of minimizing the number of defects. Experimental results of the selected structures showed that the obtained undoped Hg₁-𝑥Cd𝑥Te layers of different x have high crystallographic and optical quality, as well as good surface morphology. In particular, high-resolution X-ray diffraction (HRXRD) measurements and their analysis showed that the best structure has a full width at half maximum of rocking curve (FWHM𝑅𝐶) as low as 21.5 arcsec, and that the intensity distribution of diffraction peaks does not indicate the influence of mosaicisity and dislocation density.
Słowa kluczowe
Rocznik
Strony
art. no. e153809
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
  • Institute of Materials Engineering, Center for Microelectronics and Nanotechnology, University of Rzeszów, al. Rejtana 16c, 35-959 Rzeszów, Poland
  • Institute of Physics, International Research Centre MagTop, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
  • Institute of Materials Engineering, Center for Microelectronics and Nanotechnology, University of Rzeszów, al. Rejtana 16c, 35-959 Rzeszów, Poland
  • Institute of Materials Engineering, Center for Microelectronics and Nanotechnology, University of Rzeszów, al. Rejtana 16c, 35-959 Rzeszów, Poland
  • Institute of Physics, International Research Centre MagTop, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
autor
  • Institute of Materials Engineering, Center for Microelectronics and Nanotechnology, University of Rzeszów, al. Rejtana 16c, 35-959 Rzeszów, Poland
  • Institute of Materials Engineering, Center for Microelectronics and Nanotechnology, University of Rzeszów, al. Rejtana 16c, 35-959 Rzeszów, Poland
  • Institute of Materials Engineering, Center for Microelectronics and Nanotechnology, University of Rzeszów, al. Rejtana 16c, 35-959 Rzeszów, Poland
  • Institute of Physics, International Research Centre MagTop, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
Bibliografia
  • [1] Sze, S. M. & Lee, M. K. Semiconductor Devices: Physics and Technology, 3rd Edition. (Wiley, New York, 1985).
  • [2] Lawson,W., Nielsen, S., Putley, E. & Young, A. Preparation and properties of HgTe and mixed crystals of HgTe-CdTe. J. Phys. Chem. Solids 9, 325-329 (1959). https://doi.org.10.1016/0022-3697(59)90110-6.
  • [3] Rogalski, A. Infrared and Terahertz Detectors, Third Edition. (CRC Press, 2019). https://doi.org.10.1201/b2195.
  • [4] Dvoretsky, S. A. et al. Study of the crystalline state of MBE(013) HgCdTe/CdTe/ZnTe/GaAs heterostructure layers by the second harmonic generation method. Semiconductors 56, 562-569 (2022). https://doi.org.10.21883/SC.2022.08.54114.31.
  • [5] Gu, R. et al. Recent progress in MBE grown HgCdTe materials and devices at UWA. Proc. SPIE 9819, 98191Z (2016). https://doi.org.10.1117/12.2222997.
  • [6] Madni, I. et al. X-ray reciprocal space mapping of MBE grown HgCdTe on alternative substrates. Cryst. Res. Technol. 52, 1700167 (2017). https://doi.org.10.1002/crat.201700167.
  • [7] Holý, V., Wolf, K., Kastner, M., Stanzl, H. & Gebhardt, W. X-ray triple-crystal diffractometry of defects in epitaxic layers. J. Appl. Crystallogr. 27, 551-557 (1994). https://doi.org.10.1107/s0021889894000208.
  • [8] Carmody, M., Lee, D., Zandian, M., Phillips, J. & Arias, J. Threading and misfit-dislocation motion in molecular-beam epitaxy-grown HgCdTe epilayers. J. Electron. Mater. 32, 710-716 (2003). https://doi.org.10.1007/s11664-003-0057-7.
  • [9] Koppensteiner, E., Bauer, G., Kibbel, H. & Kasper, E. Investigation of strain-symmetrized and pseudomorphic Sim-Gen superlattices by x-ray reciprocal space mapping. J. Appl. Phys. 76, 3489-3501 (1994). https://doi.org.10.1063/1.357478.
  • [10] Holý, V., Kubena, J., Abramof, E., Pesek, A. & Koppensteiner, E. X-ray diffractometry of small defects in layered systems. J. Phys. D: Appl. Phys. 26, A146-A150 (1993). https://doi.org.10.1088/0034-4885/59/11/001.
  • [11] Fewster, P. F. X-ray analysis of thin films and multilayers. Rep. Prog. Phys. 59, 1339-1407 (1996). https://doi.org.10.1088/0034-4885/59/11/001.
  • [12] Sluis, P. Determination of strain in epitaxial semiconductor structures by high-resolution X-ray diffraction. Appl. Phys. A 58, 129-134 (1994). https://doi.org.10.1007/BF00324367.
  • [13] Hrauda, N. et al. Strain distribution in Si capping layers on SiGe islands: influence of cap thickness and footprint in reciprocal space. Nanotechnology 23, 465705 (2012). https://doi.org.10.1088/0957-4484/23/46/465705.
  • [14] Dolabella, S., Borzì, A., Dommann, A. & Neels, A. Lattice strain and defects analysis in nanostructured semiconductor materials and devices by high-resolution X-ray diffraction: Theoretical and practical aspects. Small Methods 6, 2100932 (2021). https://doi.org.10.1002/smtd.202100932.
  • [15] Bauer, G. & Ritcher, W. Optical Characterization of Epitaxial Semiconductor Layers. (Springer Berlin Heidelberg, 1996). https://doi.org.10.1007/978-3-642-79678-4.
  • [16] Sankowska, I. et al. A study of defects in InAs/GaSb type-II superlattices using high-resolution reciprocal space mapping. Materials 14, 4940 (2021). https://doi.org.10.3390/ma14174940.
  • [17] Sankowska, I. et al. On the onset of strain relaxation in the Al0.45Ga0.55As/In𝑥Ga1-𝑥As active region in quantum cascade laser structures. J. Appl. Crystallogr. 50, 1376-1381 (2017). https://doi.org.10.1107/s1600576717011815.
  • [18] Authier, A., Lagomarsino, S. & Tanner, B. K. X-ray and Neutron Dynamical Diffraction: Theory and Applications, vol. 357 (Springer, New York, 2012).
  • [19] Fewster, P. F., Andrew, N. L. & Curling, C. J. Interface roughness and period variations in the AlGaAs system grown by molecular beam epitaxy. Semicond. Sci. Technol. 6, 5-10 (1991). https://doi.org.10.1088/0268-1242/6/1/002.
  • [20] Chang, Y. et al. Surface morphology and defect formation mechanisms for HgCdTe (211)B grown by molecular beam epitaxy. J. Electron. Mater. 37, 1171-1183 (2008). https://doi.org.10.1007/s11664-008-0477-5.
  • [21] Rogalski, A. HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 68, 2267--2336 (2005). https://doi.org.10.1088/0034-4885/68/10/R01.
  • [22] Hansen, G. L., Schmit, J. & Casselman, T. Energy gap versus alloy composition and temperature in Hg1-𝑥Cd𝑥Te. J. Appl. Phys. 53, 7099–7101 (1982). https://doi.org.10.1063/1.330018.
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
2. The authors thank Msc. Piotr Krzemiński from Centre for Microelectronics and Nanotechnology for SEM measurements. This researchwas partially supported by the Foundation for Polish Science project "MagTop" no. FENG.02.01-IP.05-0028/23 is cofinanced by the European Union from the funds of Priority 2 of the European Funds for a Smart Economy Program 2021–2027 (FENG).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5756cf95-f954-4508-bbd8-f90a649bb33d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.