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Abstract:
Effective nonlinear control of manipulators with dynam‐
ically coupled arms, like those with direct drives, is
the subject of the paper. Model‐based predictive con‐
trol (MPC) algorithms with nonlinear state‐space mod‐
els and most recent disturbance attenuation technique
are proposed. This technique makes controller design
and online calculations simpler, avoiding necessity of
dynamic modeling of disturbances or resorting to addi‐
tional techniques like SMC. The core of the paper are
computationally effectiveMPC‐NPL (Nonlinear Prediction
and Linearization) algorithms, where computations at
every sample are divided into two parts: prediction of
initial trajectories using nonlinear model, then optimiza‐
tion using simplified linearized model. For a compari‐
son, a known CTC‐PID algorithm, which is also model‐
based, is considered. It is applied in standard form and
also proposed in more advanced CTC‐PID2dof version.
For all algorithms a comprehensive comparative simu‐
lation study is performed, for a direct drive manipulator
under disturbances. Additional contribution of the paper
is investigation of influence of sampling period and of
computational delay time on performance of the algo‐
rithms, which is practically important when using model‐
based algorithms with fast sampling.

Keywords:manipulator control, nonlinear control, model
predictive control, CTC‐PID control, fast sampling, delays

1. Introduction
Robotic manipulators have been broadly utilized

in various automated industrial applications. Con‐
trollers are needed for themanipulators, which assure
adequate tracking performance during fast, safe and
smooth motions. Robotic manipulators are complex,
nonlinear mechatronic systems. Thus, the controllers
must perform nonlinear and multivariable motion
tasks. There are many solutions to this problem pre‐
sented for years in the literature, starting from classi‐
cal multiloop PID control structures. This solution is
still popular in practice, especially for systems with
gears which can effectively damp coupling effects
between individual links. It is not the aim of this paper
to deliver a review of structures and algorithms of
manipulator control, with full list of related refer‐
ences. We are lucky that a review paper has been very
recently published on the subject [1], the interested
reader is referred there.

An earlier comprehensive review paper can be
here also recommended [2]. Textbooks on manipu‐
lator control, including standard PD/PID control and
more elaborate PID structureswith gravity compensa‐
tion andwith computed torque control (CTC), are also
worth mentioning [3,4].

Model‐based predictive control (MPC) is now
an established advanced control technology, repre‐
sented by numerous algorithms and software pack‐
ages applied successfully in industrial practice, espe‐
cially to process control, see, e.g., [5–13]. MPC algo‐
rithms have been successfully applied irst to indus‐
trial multivariable systems with strong interactions,
active constraints, dif icult dynamics, where classi‐
cal PID control could not provide satisfactory per‐
formance. MPC is a model‐based technology needing
more computing power; thus, it was irst applied to
processes with slow dynamics. Applications to faster
processes were then developed, on the one hand, by
application of more powerful and faster computers,
and on the other hand, by development of subopti‐
mal but simpler and faster versions of algorithms.
The latter development took place when constructing
MPC algorithms with nonlinear process models. Then
simpler, easier computable process model versions
or approximations were used, like linear parameter‐
varying (LPV), fuzzy or neural network models, and
nonlinear models of special structure like Wiener
models, see, e.g., [8,9,14–17].

Robotic manipulators are nonlinear systems per‐
forming fast motions, thus operating with short sam‐
pling periods. Therefore, direct applications of MPC
with nonlinear model and online optimization have
been dif icult and were reported in the literature
rarely and only recently, with speci ic developments
to make optimization more ef icient, see [18, 19]. On
the other hand, the nature of the manipulator con‐
trol problem, a multivariable one with possible strong
interactions and active constraints seems perfectly
suited for application of MPC. Therefore, there were
trials reported in recent years to develop simpler
MPC‐based manipulator control. The main dif iculty,
online nonlinear optimization, was usually replaced
by a quadratic one using linear approximations, or by
problems with LMI (linear matrix inequalities) con‐
straints. One approach was to use a LPV representa‐
tion of the nonlinear model, see, [20, 21]. The other
and more often met approach was to use an online
linearization.
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Wilson et.al. [22] applied DMC algorithmwith step
responsemodel recalculated at every sampling instant
by simulation of the nonlinear model. Linearization
of the model at current point was applied, e.g., in
[9, 21, 23]. The linear model was then used both to
output prediction and quadratic optimization at every
sample (the MPC‐NSL method, see [9]). To overcome
dif iculties due to nonlinearity, the approachwithMPC
applied to the simpli ied linear system after feedback
linearization by CTC (computed torque control) has
been proposed, see [24–27]. However, it seems that
application of MPC to extremely simple linear system
after CTC linearization is not a good solution. MPC
itself is a powerful technique capable to cope with
nonlinearities, equipped also with effective mecha‐
nisms of disturbance attenuation. Its potential can‐
not be well utilized when feedback linearization is
applied with not adequately accurate model, as MPC
cannot thenutilize structural properties of theoriginal
manipulator model.

The problem to attenuate disturbances, both these
stemming frommodel inaccuracies (parameter uncer‐
tainty, unmodeled dynamics) and these from external
in luences, is a vital one in control system design. To
cope with it, a combination of MPC with PID [22] or
with SMC (sliding mode control) has been proposed,
see [24, 25, 27]. However, this led to unnecessarily
overcomplicated, multiloop control systems. The rea‐
son for that was that only recently an ef icient tech‐
nique of disturbance modeling and attenuation was
proposed for MPC with state‐space models, with irst
applications to process control systems. It is especially
effective for cases with measured state as it removes
then the need to apply dynamic observers/ ilters of
disturbances, see [28–31]. The two latter papers con‐
sider both cases, with measured and unmeasured
(observed, iltered) state, and a signi icant general‐
ization from measured to unmeasured state. The case
with measured state is often met in manipulator con‐
trol, with the state consisting of both positions and
velocities.

The aim of this paper is to present an application
of state‐of‐the‐art realizations of nonlinear MPC algo‐
rithms tomanipulator control, not resorting to SMC or
other additional techniques to attenuate disturbances
or to feedback linearization by CTC. In Section 2,
the appropriate MPC algorithms will be presented.
First, the most general MPC‐NO algorithm (MPC with
Nonlinear Optimization) using a nonlinear manipula‐
tor model will be brie ly described, further used as
a benchmark. Then, much more effective MPC algo‐
rithms with nonlinear prediction and linearization
(MPC‐NPL)will be presented,which are the core of the
paper. The irst one is with appropriately organized
constrained quadratic programming instead of non‐
linear optimization. The next, computationally most
effective, will be derived as an analytical (explicit)
version of the previous one. All the algorithms will
be using the disturbance attenuation technique as
proposed in [29, 30]. Organization of the calculations
within the MPC‐NPL algorithms leading to shortest
execution times will be also discussed.

In Section 3, results of a comprehensive com‐
parative simulation study of applications of all the
algorithms to control a direct drive manipulator will
be reported, for different reference trajectories and
different disturbances. These include external dis‐
turbing torque and substantial differences between
manipulator and its model in the feedback loop,
both in parameters and in unmodelled dynamics.
The results will be also compared with those for the
CTC‐PID algorithm, in known standard form and in
enhancedCTC‐PID2dof structure. Investigationsof the
in luence of sampling period and of a delay caused by
the time of computations on algorithms performance
will be an additional contribution of the paper.

The paper is a signi icantly extended and English
version of the paper [32] published recently in Pol‐
ish. Except for minor improvements, main extensions
involve, irstly, a new concept of computational struc‐
tures of the MPC‐NPL algorithms leading to shortest
execution times. Further signi icant extension is the
design and investigation of effective versions of both
MPC and CTC‐PID algorithms for manipulator con‐
trol for piecewise constant reference trajectories. This
includes MPC with additional internal reference tra‐
jectories andCTCwithmultiloopPID in2dof structure.
All the described extensions are validated by applica‐
tion to control of adirect drivemanipulatormentioned
above. Conclusions will be the last part of the paper.

2. Model Predictive Control Algorithms
2.1. Models of the Manipulator

We consider the following well‐known nonlinear
continuous‐time dynamic model of a 𝑛‐dof rigid body
robot manipulator [1–4],

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐹(�̇�) + 𝑔(𝑞) = 𝑢, (1)

where 𝑞, �̇�, �̈� ∈ 𝑅𝑛 are vectors of joint positions,
velocities and accelerations, respectively, 𝑀(𝑞) is the
inertia matrix, 𝐶(𝑞, �̇�) is the matrix of centripetal and
Coriolis forces, 𝐹(�̇�) is the function representing fric‐
tion, 𝑔(𝑞) is the gravity vector, and 𝑢 is the control
input vector (motor torques).

De ine the state vector 𝑥𝑇 = [ 𝑞𝑇 �̇�𝑇 ] ∈ 𝑅2𝑛 . Then,
(1) can be written in standard form

�̇�= �̇�
−𝑀(𝑞)−1[𝐶(𝑞, �̇�)�̇� + 𝐹(�̇�) + 𝑔(𝑞)] + 𝑀(𝑞)−1𝑢

(2)
Using theEuler discretization schemewith integration
step 𝑇𝑐 , we get the discrete‐time model:

𝑥(𝑘+1) = 𝑥(𝑘) + 𝑇𝑐�̇�(𝑘)
−𝑇𝑐𝑀(𝑞(𝑘))−1[𝐶(𝑥(𝑘))�̇�(𝑘)+

+𝐹(�̇�(𝑘)) + 𝑔(𝑞(𝑘)) − 𝑢(𝑘)] , (3)
𝑦(𝑘) = 𝑞(𝑘). (4)
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min
𝑢(𝑘|𝑘),…,𝑢(𝑘+𝑁𝑢−1|𝑘)

𝐽(𝑘) =
𝑁

𝑝=1
𝑦𝑟𝑒𝑓(𝑘 + 𝑝|𝑘) − 𝑦(𝑘 + 𝑝|𝑘) 2

Ψ + +
𝑁𝑢−1

𝑝=0
𝑢(𝑘 + 𝑝|𝑘) − 𝑢(𝑘 + 𝑝 − 1|𝑘) 2

Λ

subject to ∶ −prediction equations calculating 𝑦(𝑘 + 𝑝|𝑘) using the model
for given values 𝑢(𝑘|𝑘), ..., 𝑢(𝑘 +𝑁−1|𝑘), 𝑝 = 1, ..., 𝑁,

−𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘+𝑝|𝑘) ≤ 𝑢𝑚𝑎𝑥 , 𝑝 = 0,… ,𝑁𝑢−1,
−△𝑢𝑚𝑎𝑥 ≤ 𝑢(𝑘+𝑝|𝑘)−𝑢(𝑘+𝑝−1|𝑘) ≤ △𝑢𝑚𝑎𝑥 , 𝑝 = 0, ..., 𝑁𝑢−1,
−𝑦𝑚𝑖𝑛 ≤ 𝑦(𝑘+𝑝|𝑘) ≤ 𝑦𝑚𝑎𝑥 , 𝑝 = 1,… ,𝑁

(7)

A simpli ied, continuous and differentiable model
with viscous friction only, 𝐹(�̇�) = 𝐹𝑣�̇� with diago‐
nal matrix 𝐹𝑣 , will be used for MPC design, treating
static (Coriolis) friction as unmodelled dynamics. This
model will be further written in standard short form

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘)), (5)
𝑦(𝑘) = C𝑥(𝑘). (6)

2.2. MPC‐NO Algorithm (with Nonlinear Optimization)

Denote by 𝑁 the number of sampling periods 𝑇𝑐
de ining the prediction horizon and by𝑁𝑢 the number
of sampling periods de ining the control horizon. We
de ine the dynamic optimization problem of MPC‐NO
controller as presented in Eq. (7), where 𝑦(𝑘+𝑝|𝑘),
𝑢(𝑘+𝑝|𝑘), etc., denote values of the manipulator out‐
puts and control inputs, respectively, predicted for the
sample 𝑘+𝑝 at the current sample 𝑘, see, e.g., [9, 30].
For 𝑝 = 0, we have 𝑢(𝑘 + 0 − 1|𝑘) = 𝑢(𝑘 − 1),
which is the manipulator control input calculated at
the previous sampling instant. For 𝑝 ≥ 𝑁𝑢 , we set
𝑢(𝑘 + 𝑝|𝑘) = 𝑢(𝑘 + 𝑁𝑢 − 1|𝑘). Matrices Ψ, Λ are
diagonal matrices of positive weighting coef icients
and ||𝑥||Ψ ≜ √𝑥𝑇Ψ𝑥. The control trajectory 𝑈(𝑘) is
the decision vector of (7),

𝑈(𝑘)𝑇= 𝑢(𝑘|𝑘)𝑇 𝑢(𝑘+1|𝑘)𝑇 ⋯ 𝑢(𝑘+𝑁𝑢−1|𝑘)𝑇
(8)

For formulation of output predictions over the pre‐
dictionhorizon𝑁, the applieddisturbance attenuation
technique is crucial. In [28], ”constant state distur‐
bancemodel”waspresented forMPCwith linear state‐
spacemodels,with the proof showing it assures offset‐
free control for asymptotically constant disturbances
(including modeling errors). In [29, 30] generaliza‐
tions to nonlinear systems were given. This constant
state disturbance model is as follows,

𝑣(𝑘) = 𝑥(𝑘)−𝑥(𝑘|𝑘−1) = 𝑥(𝑘)−𝑓(𝑥(𝑘−1), 𝑢(𝑘−1)).
(9)

This means that 𝑣(𝑘) is the difference between the
state 𝑥(𝑘)measured at current sample 𝑘 and the state
𝑥(𝑘|𝑘 − 1) predicted for this sample at previous sam‐
ple 𝑘 − 1. It is ”constant” as the same value 𝑣(𝑘) is
assumed over whole prediction horizon, i.e.,

𝑣(𝑘+1|𝑘) = 𝑣(𝑘+2|𝑘) = ⋯ = 𝑣(𝑘+𝑁−1|𝑘) = 𝑣(𝑘).
(10)

Having de ined the disturbance model, state and
then output prediction equations can be formulated,
for any given control input trajectory (8):

𝑥(𝑘 + 1|𝑘) = 𝑓(𝑥(𝑘), 𝑢(𝑘|𝑘)) + 𝑣(𝑘),
𝑥(𝑘 + 2|𝑘) = 𝑓(𝑥(𝑘 + 1|𝑘), 𝑢(𝑘 + 1|𝑘)) + 𝑣(𝑘),

⋮
𝑥(𝑘+𝑁|𝑘) = 𝑓(𝑥(𝑘+𝑁−1|𝑘), 𝑢(𝑘+𝑁−1|𝑘)) + 𝑣(𝑘),

(11)

where 𝑢(𝑘+𝑝|𝑘) = 𝑢(𝑘+𝑁𝑢−1|𝑘) , 𝑝 = 𝑁𝑢 , ..., 𝑁−1,

𝑦(𝑘 + 𝑝|𝑘) = C𝑥(𝑘 + 𝑝|𝑘), 𝑝 = 1, ..., 𝑁. (12)

With prediction equations (11)‐(12), MPC optimiza‐
tion problem (7) is fully de ined and can be solved, at
each sampling instant. The irst element 𝑢(𝑘|𝑘) of the
obtained optimal control trajectory 𝑈(𝑘) is then sent
to manipulator actuators as the current control signal
𝑢(𝑘). At the next sampling instant newmeasurements
are available and thewholeMPC algorithm is repeated
(receding horizon technique).

Subsequent MPC optimization problems (7) usu‐
ally differ only slightly at consecutive samples, with
changes in a few parameters: new state measurement
𝑥(𝑘) and last control values 𝑢(𝑘−1). In such cases, the
technique of ”warm start” may be ef icient, i.e., using
previous optimal control trajectory 𝑈(𝑘 − 1) as the
basis for new initial control trajectory 𝑈0(𝑘). Due to
the receding horizon, this consists in modifying the
𝑈(𝑘−1)byomitting the irst subvector𝑢(𝑘−1|𝑘−1) and
repeating the last one. The warm start should be ef i‐
cient for longer control horizons 𝑁𝑢 . It is usually not
the case of manipulator control, when fast sampling
and reduced computational load are required.

The MPC‐NO algorithm will be treated further in
the paper as an optimal pattern to be compared with
faster but suboptimal MPC algorithms. However, due
to development of still more powerful and cheaper
microcontrollers and improvements in nonlinear opti‐
mization procedures, the area of possible applications
of algorithms with nonlinear optimization is widen‐
ing, see, e.g., [18,33].
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2.3. MPC‐NPL Algorithms (with Nonlinear Prediction
and Linearization)

A straightforward way to simplify the MPC‐NO
algorithm is to construct an adaptive algorithm that, at
each sampling instant, linearizes the nonlinear model
and then uses the standard MPC algorithm with the
linear model for prediction and optimization. It is
knownasMPC‐NSL technique (Nonlinearwith Succes‐
sive Linearizations), see, e.g., [6, 9, 21]. However, this
algorithm may not be successful, especially for sys‐
tems with stronger nonlinearities. The computation‐
ally comparable andmorewidely applicable approach
is the algorithm that, at each sampling instant, irstly
performs prediction of the initial output trajectory
using the full nonlinear model. Then, in the second
phase, it performs linearization and applies optimiza‐
tion using the incremental linear model, to improve
the initially computed trajectory. Such algorithm will
be denoted by MPC‐NPL (MPC with Nonlinear Predic‐
tion and Linearization), see, e.g., [9].

Subsequent steps of the MPC‐NPL algorithm, at
𝑘‐th sampling instant:
1) The manipulator state 𝑥(𝑘) is measured (or esti‐

mated), 𝑣(𝑘) is calculated according to (9).
2) Initial trajectory of control inputs 𝑈0(𝑘) is deter‐

mined over the prediction horizon,

𝑈0(𝑘)𝑇=[𝑢0(𝑘|𝑘)𝑇 𝑢0(𝑘+1|𝑘)𝑇⋯ 𝑢0(𝑘+𝑁−1|𝑘)𝑇 ].

Using 𝑈0(𝑘), the initial trajectory of states 𝑋0(𝑘)
(consisting of 𝑥0(𝑘 +𝑝|𝑘), 𝑝 = 1,… ,𝑁) and then
the initial trajectory of outputs 𝑌0(𝑘) (consisting
of 𝑦0(𝑘+𝑝|𝑘), 𝑝=1,… ,𝑁) are calculated using the
nonlinear model:

𝑥0(𝑘+𝑝|𝑘) =𝑓(𝑥0(𝑘+𝑝−1|𝑘), 𝑢0(𝑘+𝑝−1|𝑘))+
+ 𝑣(𝑘), (13)

𝑦0(𝑘+𝑝|𝑘) = C𝑥0(𝑘+𝑝|𝑘), 𝑝 = 1,… ,𝑁, (14)

where 𝑥0(𝑘|𝑘) = 𝑥(𝑘) is the measured state.
3) The state equation is linearized at current point

(𝑥(𝑘), 𝑢0(𝑘|𝑘)). Matrix M(𝑘) describing linear
relation between increments of control (over ini‐
tial control trajectory) and corresponding incre‐
ments of outputs (over initial output trajectory) is
calculated,

△𝑌(𝑘) = M(𝑘) ⋅ △𝑈(𝑘), (15)

where

△𝑈(𝑘)𝑇 = △𝑢(𝑘|𝑘)𝑇 △𝑢(𝑘+1|𝑘)𝑇 ⋯
⋯ △𝑢(𝑘+𝑁𝑢−1|𝑘)𝑇 , (16)

△𝑌(𝑘)𝑇 = △𝑦(𝑘+1|𝑘)𝑇 △𝑦(𝑘+2|𝑘)𝑇 ⋯
⋯ △𝑦(𝑘+𝑁|𝑘)𝑇 , (17)

where

△𝑢(𝑘|𝑘) = 𝑢(𝑘|𝑘) − 𝑢(𝑘−1),

△𝑢(𝑘+1|𝑘) = 𝑢(𝑘+1|𝑘) − 𝑢(𝑘|𝑘),
etc.

4) The MPC‐NPL quadratic optimization problem
(23) with the linearized model (15) is solved, with
the solution△𝑢(𝑘 + 𝑝|𝑘), 𝑝 = 0, ..., 𝑁𝑢 − 1.

5) The (sub)optimal control trajectory is calculated:

𝑢(𝑘 + 𝑝|𝑘) = 𝑢0(𝑘 + 𝑝|𝑘) +
𝑝

𝑗=0
△𝑢(𝑘 + 𝑗|𝑘),

𝑝 = 0, ..., 𝑁𝑢−1,
𝑢(𝑘 + 𝑝|𝑘) = 𝑢(𝑘 + 𝑁𝑢 − 1|𝑘), 𝑝 = 𝑁𝑢 , ..., 𝑁−1.

(18)

6) First subvector of the optimal control trajectory,
𝑢(𝑘|𝑘), is sent to the actuators as the current con‐
troller output (manipulator control input) 𝑢(𝑘).
Initial control trajectory𝑈0(𝑘) can be either a con‐

stant one, consisting of last manipulator control input
𝑢(𝑘−1), i.e., 𝑢0(𝑘+𝑝|𝑘) = 𝑢(𝑘−1), 𝑝 =0, ..., 𝑁−1, or
the trajectory according to ”warmstart” technique, i.e.,
𝑢0(𝑘+𝑝|𝑘) = 𝑢(𝑘+𝑝|𝑘−1), 𝑝=0, ..., 𝑁−2, 𝑢0(𝑘+𝑁−
1|𝑘) = �̂�(𝑘+𝑁−2|𝑘−1). The irst is recommended
for very short control horizon (𝑁𝑢 ≤ 2) and small
𝑇𝑐 , a case typical for fast dynamics. It is the case of
manipulator control; thus, further presentation will
be with this trajectory. The latter one may increase
ef iciency for longer 𝑁𝑢 , but needs a reformulation of
𝐽(𝑘) in (23). This will be omitted, due to the given
reason and to shorten the length of the paper.

At point 3, an incremental linear state‐spacemodel
is obtained after linearization

𝑥(𝑘 + 1) = A(𝑘)𝑥(𝑘) + B(𝑘)𝑢(𝑘), (19)

The manipulator model (3) is linear with respect to
𝑢(𝑘), hence linearization is not needed to get B(𝑘),
B(𝑘) = 𝑇𝑐𝑀(𝑞(𝑘))−1. To get A(𝑘), partial deriva‐
tives must be calculated for the last 𝑛 state equations
in (3) only, as shown in Eq. (20), where 𝜕

𝜕𝑥(𝑘) [ ⋅ ]
denotes matrix of partial derivatives of the function
in square brackets (the Jacobi matrix). After lineariza‐
tion, matrices A(𝑘), B(𝑘) and C are used to calculate
the dynamic matrixM(𝑘), which has the structure

M(𝑘)=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M1(𝑘) 0 ⋯ 0
M2(𝑘) M1(𝑘) ⋯ 0
M3(𝑘) M2(𝑘) ⋯ 0

⋮ ⋮ ⋱ ⋮
M𝑁𝑢(𝑘) M𝑁𝑢−1(𝑘) ⋯ M1(𝑘)
M𝑁𝑢+1(𝑘) M𝑁𝑢(𝑘) ⋯ M2(𝑘)⋮ ⋮ ⋮ ⋮
M𝑁(𝑘) M𝑁−1(𝑘) ⋯ M𝑁−𝑁𝑢+1(𝑘)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(21)
where

M𝑖(𝑘) = C [I+A(𝑘)+A(𝑘)2+⋯+A(𝑘)𝑖−1]B(𝑘), (22)

with M1(𝑘) = CB(𝑘). The structure (21)‐(22) is
standard for MPC algorithms with linear state‐space
models, see, e.g., [9,34].
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A(𝑘) =
0𝑛 I𝑛

𝜕
𝜕𝑥(𝑘) −𝑇𝑐𝑀(𝑞(𝑘))−1 (( 𝐶(𝑥(𝑘))+𝐹𝑣) �̇�(𝑘) + 𝑔(𝑞(𝑘)) ) 𝑛×2𝑛

(20)

min
Δ𝑈(𝑘)

𝐽(𝑘) =
𝑁

𝑝=1
𝑦𝑟𝑒𝑓(𝑘 + 𝑝|𝑘) − 𝑦0(𝑘 + 𝑝|𝑘) −M(𝑘)Δ𝑈(𝑘) 2

Ψ+

+
𝑁𝑢−1

𝑝=0
△𝑢(𝑘 + 𝑝|𝑘) 2

Λ

subject to ∶ − 𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘 − 1) + ∑𝑝
𝑗=0△𝑢(𝑘 + 𝑗|𝑘) ≤ 𝑢𝑚𝑎𝑥 , 𝑝 = 0,… ,𝑁𝑢−1,

− △𝑢𝑚𝑎𝑥 ≤ △𝑢(𝑘 + 𝑝|𝑘) ≤ △𝑢𝑚𝑎𝑥 , 𝑝 = 0,… ,𝑁𝑢 − 1,
− 𝑦𝑚𝑖𝑛 ≤ 𝑦0(𝑘 + 𝑝|𝑘) +M(𝑘)Δ𝑈(𝑘) ≤ 𝑦𝑚𝑎𝑥 , 𝑝 = 1,… ,𝑁,

(23)

At point 4., the quadratic programming (QP) prob‐
lem shown in Eq. (23) is solved. It is a standard form
of the MPC optimization problem with a linear model,
with (16) as the vector of decision variables, see,
e.g., [9].

The fundamental difference between (23) and a
QP problem for MPC with a linear model only is that
now the initial trajectory of the outputs, 𝑦0(𝑘+𝑝|𝑘),
𝑝 = 1,… ,𝑁, is calculated using the nonlinear model,
not the linear one, and the dynamic matrix M(𝑘) is
subject to adaptation.
2.4. Analytical (Explicit) MPC‐NPL Algorithm

To reduce further online computations, an analyt‐
ical (explicit) version of the MPC‐NPL algorithm has
been developed. The idea is to ind, irst, the point
minimizing the quadratic function 𝐽(𝑘) of (23) only,
neglecting temporarily inequality constraints. Next,
the calculated (unconstrained) values are trimmed to
limits of inequality constraints. This adds additional
suboptimality, but signi icantly reduces the compu‐
tational load. Moreover, application examples have
shown that such faster algorithm can be almost as
effective as the one with constrained QP optimization
for caseswith limited activity of inequality constraints
(for inactive constraints results are equivalent).

The function 𝐽(𝑘) in (23) is strictly convex, thus
its minimum can be easily calculated solving linear
equations of necessary optimality conditions:

[M(𝑘)𝑇ΨM(𝑘)+Λ]Δ𝑈(𝑘) = M(𝑘)𝑇Ψ [𝑌𝑟𝑒𝑓(𝑘)−𝑌0(𝑘)],
(24)

whereΨ = diag{Ψ,… ,Ψ},Λ = diag{Λ, … , Λ} areblock‐
diagonal matrices, consisting of 𝑁 blocks Ψ and of 𝑁𝑢
blocks Λ, respectively, and

𝑌𝑟𝑒𝑓(𝑘) =
𝑦𝑟𝑒𝑓(𝑘 + 1|𝑘)
𝑦𝑟𝑒𝑓(𝑘 + 2|𝑘)

⋮
𝑦𝑟𝑒𝑓(𝑘 + 𝑁|𝑘) 𝑛𝑁×1

, (25)

𝑌0(𝑘) =
𝑦0(𝑘 + 1|𝑘)
𝑦0(𝑘 + 2|𝑘)

⋮
𝑦0(𝑘 + 𝑁|𝑘) 𝑛𝑁×1

. (26)

The solution Δ𝑈(𝑘) of (24) yields the unconstrained
(sub)optimal trajectory of control increments (over
the initial trajectory) on the control horizon:

Δ𝑈(𝑘)𝑇 = △𝑢(𝑘|𝑘)𝑇 △𝑢(𝑘 + 1|𝑘)𝑇 ⋯
⋯ △𝑢(𝑘 +𝑁𝑢− 1|𝑘)𝑇 (27)

The irst subvector △𝑢(𝑘)=△𝑢(𝑘|𝑘) is now trimmed
to lower andupper limits of rate of change constraints,
−△𝑢𝑚𝑎𝑥 and △𝑢𝑚𝑎𝑥 , respectively, with the result
△𝑢(𝑘). Next, 𝑢(𝑘) = 𝑢(𝑘−1) + △𝑢(𝑘) is trimmed
to lower and upper limits of amplitude constraints,
𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 , with the resulting control signal 𝑢(𝑘)
satisfying all constraints. This is shown schematically
in Figure 1, which presents the structure of the algo‐
rithm. It will be called MPC‐NPL analytical algorithm
(MPC‐NPLa). It is ”analytical” because the solution
Δ𝑈(𝑘) of (24) can be expressed by analytical formula

Δ𝑈(𝑘) = [M(𝑘)𝑇ΨM(𝑘) + Λ]−1M(𝑘)𝑇Ψ⋅
⋅ [𝑌𝑟𝑒𝑓(𝑘) − 𝑌0(𝑘)]. (28)

However, solving set of linear equations (24) needs
signi icantly less computations than application of the
inverse matrix formula (28). Therefore, it is recom‐
mended when M(𝑘) is recalculated at each sampling
instant. However, if it is recalculated less often, then
using (28) may be reasonable.

The algorithm described in the previous section
will be denoted MPC‐NPLn (numerical), to distin‐
guished it from MPC‐NPLa.
2.5. Efficient Computational Structures for MPC‐NPL

Main computational load when performing MPC‐
NPL algorithms is due to:
1. Calculation of the nonlinear model (13)𝑁 times to

get the initial output trajectory 𝑌0(𝑘).
2. Linearization of the nonlinear model, involving 𝑛

calculations of this model when applying numeri‐
cal approximation of partial derivatives. Then cal‐
culation of the dynamic matrixM(𝑘) of dimension
(𝑁⋅ 𝑛) × (𝑁𝑢 ⋅ 𝑛), according to (21).
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Figure 1. Structure of the MPC‐NPL analytical algorithm

3. Solving the MPC optimization problem. If numeri‐
cal algorithm is applied, then QP procedure is used
and the computational load dependsmainly on the
number of optimization variables which is 𝑁𝑢 ⋅ 𝑛.
When applying analytical algorithm, the set of 𝑁𝑢 ⋅
𝑛 linear equations (24) is solved or substitution
(28) is calculated, with computational load due to
computation (and possibly inversion) of quadratic
matrixM(𝑘)𝑇ΨM(𝑘)+Λ of dimension𝑁𝑢 ⋅ 𝑛.
Looking at the above analysis, it can be seen

that the computational load depends on manipulator
dimensionality 𝑛, what could be expected. It depends
also on the length of prediction and control horizons,
𝑁 and 𝑁𝑢 , respectively, which are design parameters
of MPC algorithms. To decrease the time of computa‐
tions as much as possible, the horizons should be as
short as possible – but preserving adequate control
performance. This concerns irst of all control horizon
𝑁𝑢 , as it directly in luences dimensionality of the MPC
optimization problem. Luckily, 𝑁𝑢 can be very short
– in the example manipulator considered in the next
section, 𝑁𝑢 = 2 occurred to be a very good choice,
even 𝑁𝑢 = 1 could have been considered. The length
of prediction horizon 𝑁 must be suf iciently long, to
assure appropriate control performance and robust‐
ness, see, e.g., [9, 34] – but no longer than necessary
(theoretically, it is not limited from above). It should
be also noted that length of 𝑁 depends on physical
dynamics of the controlled process (the manipulator),
thus the faster sampling of the MPC controller, the
longer 𝑁must be designed.

Having selected the horizons, organization of cal‐
culations is crucial to decrease the time. First, the
matrix (21) can be calculated ef iciently, despite its
complexity. It has Toeplitz block‐structure; thus, only
its irst block‐column consisting of matrices M𝑖(𝑘)
must be calculated. Due to structure of eq. (22), this
calculations can be effectively organized in a recursive
way:

P1 = B(𝑘), M1(𝑘) = CP1,
P𝑖 = B(𝑘) + A(𝑘)P𝑖−1, M𝑖(𝑘) = CP𝑖 , 𝑖 = 2,… ,𝑁

(29)

thus consisting of 𝑁−1multiplications and additions
of minor size matrices, as multiplication by C means
reduction of each P𝑖 to its irst 𝑛 rows. Certainly,
computational load depends also on complexity of the

x k , u k-( ) ( 1)

u k( )

linearization,
calculation of kM( )

solution
of QP

0

MPC-NPL controller

prediction of Y (k)

Figure 2. Parallel computational structure of MPC‐NPL

manipulator itself, on its number of degrees of free‐
dom 𝑛, which is also the number of nonlinear equa‐
tions in the model used to calculate the initial trajec‐
tory in point 1 and linearized model in point 2 above.
Thus, dimension of the matrix M(𝑘) (21), dependent
on A(𝑘), B(𝑘) and C of the linearized model, also
depends on 𝑛.

It should be noted that calculations enlisted in
points 1 and 2 above can be performed independently,
the only common element are the initial data. Thus,
applying two‐processor parallel computation struc‐
ture should lead to reduction of computation time.
Such structure is depicted in Figure 2.

Expierience in application of MPC‐NPL algorithms
shows that linearization may be updated less fre‐
quently, not at every sampling instant, but repeated
every 𝑁𝑟𝑙𝑖𝑛 samples only, 𝑁𝑟𝑙𝑖𝑛 > 1. In particular,
this works well for weaker nonlinearities or when
fast sampling is applied, which is standard in manip‐
ulator control. Then, control structure can be also
designed with linearization and computation ofM(𝑘)
performed by a distinct supervisory processor (com‐
puter), whereas basic processor calculates the ini‐
tial output trajectory and performs the optimization,
within the short sampling period 𝑇𝑐 .

Linearization is the same both in the numerical
and analytical NPL algorithms. But there is a differ‐
ence in optimization problems. In the numerical algo‐
rithm, the supervisory processor calculates and trans‐
mitsmatrixM(𝑘) to the basic processor, needed to for‐
mulate theQPproblem. In the the analytical algorithm,
more calculations can be shifted to the supervisory
processor. As the same matrix M(𝑘) is used during
subsequent 𝑁𝑟𝑙𝑖𝑛 sampling periods, it is better to use
explicit formula (28) than to solve linear equations
(24).
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u

k k+1k–1 k+2 k+3

u k( )

u k( -1)

x k( )

cTt =u

x k+( 2)

Figure 3. Time dependences in digital control system
with unitary computational control delay 𝜏𝑢

Moreover, what the basic processor really needs is
the irst 𝑛 rows of the matrix

K(𝑘) = M(𝑘)𝑇ΨM(𝑘) + Λ −1
M(𝑘)𝑇Ψ, (30)

calculated by the supervisory processor. Denote by
K1(𝑘) irst 𝑛 rows of K(𝑘), then optimization task
performed by the basic processor reduces to substi‐
tution

△𝑢(𝑘) = K1(𝑘)[𝑌𝑟𝑒𝑓(𝑘) − 𝑌0(𝑘)], (31)

followed by trimming △𝑢(𝑘) to the constraints, as
described in the previous section. This is the fastest
realization of the MPC‐NPL algorithm.

Despite efforts to minimize the time of computa‐
tions as much as possible, this time may be compa‐
rable or almost equal to the length of the sampling
period 𝑇𝑐 , for fast sampling. Thus, it introduces com‐
putational control delay 𝜏𝑢 to the feedback loop. The
most practical case it that of 𝜏𝑢 = 𝑇𝑐 , which will
be further considered. Possibility to use the model
augmented by this delay is an advantage of the MPC
algorithms. For the control delay 𝜏𝑢 = 𝑇𝑐 , this
results in augmenting the manipulator state to 𝑥𝑇 =
[𝑞𝑇 �̇�𝑇 𝑧𝑇] ∈ 𝑅3𝑛 , and the state equations (3) to

𝑥(𝑘+1) =
𝑞(𝑘) + 𝑇𝑐 �̇�(𝑘)
�̇�(𝑘) − 𝑇𝑐𝑀(𝑞(𝑘))−1[𝐶(𝑥(𝑘))�̇�(𝑘)+
𝑢(𝑘)

+𝐹(�̇�(𝑘))+𝑔(𝑞(𝑘))−𝑧(𝑘) ] (32)

It should be pointed out that the mentioned com‐
putational delay 𝜏𝑢 is an additional unitary delay,
which adds to the standard unitary delay of digital
control – resulting in the irst reaction of the state on
the control signal 𝑢(𝑘) after two sampling periods.
This is schematically shown in Figure 3, where 𝑢(𝑘)
denotes control signal calculated using information
(measurements) obtained at time instant 𝑘.

3. Control of a direct drive manipulator
3.1. Models for Manipulator Simulation and Controller

Design

The planar two‐link experimental direct drive
manipulator (EDDM) will be considered, it is
described in detail in [35]. Its schematic diagram
is shown in Figure 4. Vectors of joint angles

Figure 4. Schematic diagram of the experimental direct
drive manipulator

and control torques are 𝑞(𝑡) = [ 𝑞1(𝑡) 𝑞2(𝑡) ]𝑇 ,
𝑢(𝑡) = [ 𝑢1(𝑡) 𝑢2(𝑡) ]𝑇 , respectively. Matrices and
function of its model (1) are:

𝑀(𝑞) = 𝑝1 + 2𝑝3 cos(𝑞2) 𝑝2 + 𝑝3 cos(𝑞2)
𝑝2 + 𝑝3 cos(𝑞2) 𝑝2 ,

(33)

𝐶(𝑞, �̇�) = −𝑝3 sin(𝑞2)�̇�2 −𝑝3 sin(𝑞2)(�̇�1 + �̇�2)
−𝑝3 sin(𝑞2)�̇�1 0 ,

(34)

𝐹(�̇�) = 𝑓𝑣1 0
0 𝑓𝑣2

�̇�1
�̇�2 + 𝑓𝐶1 0

0 𝑓𝐶2
sgn(�̇�1)
sgn(�̇�2)

= 𝐹𝑣
�̇�1
�̇�2 + 𝐹𝐶

sgn(�̇�1)
sgn(�̇�2) , (35)

𝑔(𝑞) = 𝑝4 sin(𝑞1) + 𝑝5 sin(𝑞1 + 𝑞2)
𝑝5 sin(𝑞1 + 𝑞2) . (36)

Physical data given in [35] lead to the following values
of model parameters:

𝑝1 = 2.352𝑁𝑚𝑠2, 𝑝2 = 0.102𝑁𝑚𝑠2,
𝑝3 = 0.084𝑁𝑚𝑠2,
𝑝4 = 38.466𝑁𝑚, 𝑝5 = 1.825𝑁𝑚
𝑓𝑣1 = 2.288𝑁𝑚𝑠, 𝑓𝑣2 = 0.175𝑁𝑚𝑠,
𝑓𝐶1 = 7.17𝑁𝑚 for �̇�1>0,
𝑓𝐶1 = 8.05𝑁𝑚 for �̇�1<0,
𝑓𝐶2 = 1.734𝑁𝑚,

together with limits on control torques:
𝜏1𝑚𝑎𝑥=200𝑁𝑚, 𝜏2𝑚𝑎𝑥=15𝑁𝑚.
We used the discrete‐time version (3)‐(4) of the

model for simulation of the manipulator itself within
the feedback control loop, with very short integration
step 𝑇𝑝 = 0.0001𝑠. Its discrete‐time dynamics mimics
then perfectly the continuous‐time one. For design of
MPC controllers, a simpli ied continuous and differen‐
tiable model was used, with Coulomb friction omitted
(treated as unmodeled dynamics), i.e. 𝐹(�̇�)=𝐹𝑣�̇�. The
controller sampling period 𝑇𝑐 (𝑇𝑐 ≫ 𝑇𝑝) was used.

7



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 18, N∘ 2 2024

Table 1. Values of ISE for MPC algorithms with cubic reference trajectories, for few 𝑁𝑢 and different disturbances

disturbances 𝑁𝑢 MPC-NO MPC-NPLn NPL-NPLa

Cf 1 0.1120⋅10−3 0.1122⋅10−3 0.1122⋅10−3
(Coulomb friction) 2 0.0321⋅10−3 0.0321⋅10−3 0.0321⋅10−3

3 0.0234⋅10−3 0.0234⋅10−3 0.0234⋅10−3
4 0.0230⋅10−3 0.0230⋅10−3 0.0230⋅10−3

Cf 1 0.1120⋅10−3 0.1122⋅10−3 0.1122⋅10−3
+ external (Zu) 2 0.0339⋅10−3 0.0339⋅10−3 0.0339⋅10−3

3 0.0250⋅10−3 0.0250⋅10−3 0.0250⋅10−3
Cf 1 0.0983⋅10−3 0.0983⋅10−3 0.0983⋅10−3

+ parametric (P1) 2 0.0310⋅10−3 0.0310⋅10−3 0.0310⋅10−3
3 0.0252⋅10−3 0.0252⋅10−3 0.0252⋅10−3

The following scenario of simulationswas applied:
• Simulation horizon: length 2.5s. Reference trajecto‐
ries with two changes of joints positions (angular,
in radians), irst change starting at 0.15s, second at
1.5s. The changes are implemented:
1) along cubic trajectories, with each cubic trajec‐

tory duration time 0.5s.
2) as steps, i.e., reference trajectories are piecewise

constant.
• Disturbances:
– external (Z1): a torque 4𝑁𝑚 added at the input
to the second link at middle point 1.25 s of the
simulation horizon; a disturbance typical for test‐
ing controller performance, including manipula‐
tor controllers, see, e.g., [3]; or

– parametric uncertainty (P1): change od manipu‐
lator dynamics by adding a mass of 1 kg at the
end of the second arm. This leads to change of
manipulator parameters to the values:
𝑝1 = 2.596𝑁𝑚𝑠2, 𝑝2 = 0.144𝑁𝑚𝑠2,
𝑝3 = 0.154𝑁𝑚𝑠2,
𝑝4 = 42.88𝑁𝑚, 𝑝5 = 3.351𝑁𝑚.
These parameters de ine the manipulator as the
process in the feedback loop only, controllers are
designed using the previously given nominal val‐
ues of parameters.

• Control performance de ined by ISE (integrated
squared errors) criterion:

ISE =
𝑁𝑠𝑦𝑚

𝑘=1
𝑒1(𝑘)2 + 𝑒2(𝑘)2 ∗ 𝑇𝑐 , (37)

where 𝑁𝑠𝑦𝑚 is the number of sampling periods 𝑇𝑐
along the simulation horizon.

It should be pointed out that the assumed distur‐
bance and parameter inaccuracy are quite signi icant.
The disturbing torque is about 27% of maximal sec‐
ond actuator torque (15𝑁𝑚), changes in parameters
𝑝1, … , 𝑝5 are also quite large. Additionally, nonlinear
unmodelled dynamics is present (Coulomb friction).

In the design process of MPC controllers, weight‐
ing parameters in the performance function has been
found tobe appropriatewith values [𝜓1𝜓2] = [1010],
[𝜆1 𝜆2] = [0.0001 0.001], assuring stable and robust
performance. Notice that differences in values of the
weights 𝜆 and 𝜓 correspond to differences in ranges
of the corresponding variables (scaling). Sampling
period 𝑇𝑐 = 0.005 s was basically assumed, but per‐
formance with another values was also investigated.
Different prediction horizons were tested, 𝑁=18 has
been chosen for 𝑇𝑐 = 0.005 s as a tradeoff between
computational load and performance/robustness.
3.2. Results with MPC‐NO and MPC‐NPL Controllers

A comprehensive comparison of control perfor‐
mancewith allMPCalgorithmspresented in this paper
is given in Table 1, for the case with cubic reference
trajectories. It is in terms of values of ISE index (37),
whichmakes the comparison easier. Simulations were
performed in Matlab environment, using for nonlin‐
ear optimization ”fmincon” and for QP ”quadprog”
procedures. For model linearization, ”Symbolic Math”
toolbox was tried. But, due to extremely complex for‐
mulae obtained, numerical approximation of partial
derivativeswas applied, with results practically equiv‐
alent, very small differences did not in luenced control
system behaviour. Three cases were considered: with
unmodeled dynamics denoted by ”Cf” (Coulomb fric‐
tion) only, with Cf and external disturbing torque (Zu)
or parameter uncertainty (P1) added.

Very short control horizons𝑁𝑢=1 and𝑁𝑢=2 assure
the smallest dimensionality of nonlinear optimiza‐
tion problems, 𝑁𝑢 × 𝑛 = 2 and 4, respectively, thus
the shortest online computation (optimization) time.
The choice 𝑁𝑢=2 results in better control perfor‐
mance, but performance with 𝑁𝑢=1 may be accept‐
able when computation time is critical. ISE value with
𝑁𝑢=3 is only slightly better than for 𝑁𝑢=2, but with
increased computational load. For each of the dis‐
turbance cases, results for all three algorithms, NO,
NPLn and NPLa, are practically identical. The trajecto‐
ries are visually undistinguishable, therefore are pre‐
sented for the MPC‐NPLn algorithm only, in Figures 5
and 6, for external disturbance and parameter uncer‐
tainty, respectively. Notice that external disturbance
and parameter uncertainty are well attenuated, with
minor differences for the same control horizons.
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Figure 5. Trajectories for MPC‐NPLn with 𝑁𝑢=2 and external disturbance (Zu)
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Figure 6. Trajectories for MPC‐NPLn with 𝑁𝑢=2 and parametric disturbance (P1)

For piecewise constant reference trajectories, a
direct application of even the MPC algorithms (as pre‐
sented hitherto) leads usually to excessive saturation
of control signals and to overshoots. But it is pos‐
sible to avoid this, by adding internal MPC mecha‐
nism transforming piecewise constant reference tra‐
jectories 𝑦𝑟𝑒𝑓(𝑘) into internal reference trajectories
𝑦𝑖𝑟𝑒𝑓(𝑘) of exponential type, see, e.g., [17], [27]. This
involves replacing the irst sum in the performance
function 𝐽(𝑘) in (7) with the sum

𝐽1(𝑘) =
𝑁

𝑝=1
𝑦𝑖𝑟𝑒𝑓(𝑘 + 𝑝|𝑘) − 𝑦(𝑘 + 𝑝|𝑘) 2

𝜳 , (38)

where

𝑦𝑖𝑟𝑒𝑓(𝑘 + 𝑝|𝑘) = [1 − (𝑇𝑟𝑒𝑓)𝑝]𝑦𝑟𝑒𝑓(𝑘) + (𝑇𝑟𝑒𝑓)𝑝𝑦(𝑘),
𝑝 = 1, ..., 𝑁 (39)

and 0 ≤ 𝑇𝑟𝑒𝑓 < 1 is a scaling parameter. For 𝑇𝑟𝑒𝑓 = 0,
𝑦𝑖𝑟𝑒𝑓(𝑘 + 𝑝|𝑘) = 𝑦𝑟𝑒𝑓(𝑘), but the larger 𝑇𝑟𝑒𝑓 > 0 the
slower the convergence of 𝑦𝑖𝑟𝑒𝑓(𝑘 + 𝑝|𝑘) to 𝑦𝑟𝑒𝑓(𝑘),
over the prediction horizon. This technique enables
to achieve smooth, overshoot‐free trajectories of the
manipulator arms.

Figures 7 and 8 show manipulator trajectories for
MPC‐NPLn algorithmwith and without internal refer‐
ence trajectory technique, respectively, with external
disturbance. The advantage of using this technique
can be clearly seen. Comparison of Figures 5 and 7
leads to conclusion that the approach described now
is a possible alternative to smooth cubic transitions
between positions, but in the cubic case the trajecto‐
ries of control inputs are more smooth, without satu‐
ration.
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Figure 8. Trajectories for MPC‐NPLn with 𝑁𝑢=2, 𝑇𝑟𝑒𝑓 = 0 and disturbance Zu; piecewise constant reference trajectories

More comprehensive results are shown in Table 2,
in terms of ISE values. Trajectories corresponding to
these results are similar to those shown in Figure 7.
The situation is with signi icant constraint activity
(saturation of control inputs), therefore application of
analytical algorithm leads to inferior results.

The presented results clearly indicate, for both
smooth cubic and abrupt step changes between ref‐
erence positions, that much simpler MPC‐NPL algo‐
rithms can be used practically without loss of control
quality, instead of more computationally involved and
less computationally robust MPC‐NO one (as nonlin‐
ear optimization is less robust than a quadratic one).
The loss of performance can be only awaited with
most simpleMPC‐NPL analytical version, in caseswith
signi icant activity of constraints.

3.3. CTC‐PID and CTC‐PID2dof Control, Comparisons
with MPC

To evaluate performance, applicability of MPC
algorithms to control of robotic manipulators fairly, a
comparison with existing technique should be done.
The most commonly used in industry is the classical
decentralized PID control, e.g., [1, 4, 36], particularly
when joint motors are with gears, reducing cross‐
coupling effects between joints. However, implemen‐
tation and tuning of PID controllers must be made
with care, to overcome possible overshoots.

10



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 18, N∘ 2 2024

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

ou
tp

ut
s

EDDM CTC-PID, Dmeas., T
p

=0.0001, T
c
=0.005, T

cub
=0.5, 

1
=18;  

2
=20, 

u
=0, L=0kg

y
1

yref
1

y
2
 (top)

yref
2

0 0.5 1 1.5 2 2.5
-200

-100

0

100

200

u 1

-10

0

10

u 2
, z

u2

u
1

u
2

z
u2

0 0.5 1 1.5 2 2.5

kp1=972, kd1=54; k i1Tc=29.16;   kp2=1200, kd2=60, k i2Tc=40,  ISE=0.10058 10 -3

0

0.01

0.02

co
nt

ro
l e

rr
or

s

e
1

e
2

Figure 9. CTC‐PID control, with external step disturbance at 1.25s

Table 2. ISE for MPC algorithms with 𝑇𝑟𝑒𝑓=0.95, for two
values of 𝑁𝑢 and different disturbances, for piecewise
constant reference trajectories;
1) overshoot 4% for second step, eliminated with 𝑁=22,
2) overshoot 18% for second step, with 𝑁=22 reduced to 10%

disturb. 𝑁𝑢 MPC-NO MPC-NPLn MPC-NPLa

Cf 1 0.6435 0.6454 0.7508
2 0.6339 0.6343 0.7291

Cf+Zu 1 0.6309 0.6343 0.7392
2 0.6180 0.6191 0.7092

Cf+P1 1 0.6699 0.6725 0.7871
2 0.66271) 0.66451) 0.76212)

Possible solutions are, e.g., partitioned PD control
or PID with reference trajectory pre iltering, see, e.g.,
[4]. In some instances, double‐loop P‐PI control of
position and velocity can be utilized. However, for
manipulators with stronger interactions, like those
with direct drive motors, the model‐based algorithms
are rather recommended. The well known solution is
here the computed torque control (CTC), which lin‐
earizes and decouples the manipulator, with PD/PID
controllers with acceleration feedforward on top of
the linearized manipulator, see, e.g., [1, 4, 36]. Com‐
parison ofMPCwith this control structure seems to be
fair, as both are nonlinear and model‐based.

Recall the CTC‐PID controller algorithm, see, e.g.,
[1,4,36]:

𝑢 = 𝑀(𝑞)(�̈� 𝑟𝑒𝑓+𝑢𝑃𝐼𝐷)+𝐶(𝑞, �̇�)�̇�+𝐹(�̇�)+𝑔(𝑞), (40)

where 𝑢𝑃𝐼𝐷 is the output of a multiloop PID con‐
troller. Inserting (40) into the manipulator dynam‐
ics (1) results in closed loop dynamics consisting of
𝑛 third order dynamical systems with PID gains 𝑘𝑝𝑗 ,
𝑘𝑑𝑗 and 𝑘𝑖𝑗 as parameters, 𝑗 = 1, ..., 𝑛. Assuming pole
placementn design, poles of characteristic equations
yields formulae for PID gains.

Table 3. Values of ISE for CTC‐PID and MPC‐NPL
algorithms, for different disturbances, with cubic
reference trajectories between positions

CTC-PID MPC-NPLn
(𝛼1=18, 𝛼2=20) (𝑁=18,𝑁𝑢=2)

disturb. ISE disturb. ISE

none 0.0015⋅10−3 Cf 0.0321⋅10−3
Zu 0.1006⋅10−3 Cf+Zu 0.0339⋅10−3
P1 0.1485⋅10−3 Cf+P1 0.0310⋅10−3

A popular choice to get overshoot‐free response
is to assume one triple real pole, see [4, 37], then
tuning all gains of every SISO PID controller is by one
parameter, 𝑘𝑝𝑗 = 3𝛼2𝑗 , 𝑘𝑑𝑗 = 3𝛼𝑗 , 𝑘𝑖𝑗 = 𝛼3𝑗 , where
−𝛼𝑗 (𝛼𝑗 > 0) is the assumed pole value. This value is
usually chosen according to required settling time 𝑡𝑠 ,
for a triple pole 𝛼 ≈ 8/𝑡𝑠 , see [37]. Assuming 𝑡𝑠 =0.5
s for both arms (time equal to the period of position
change along cubic trajectories), we get 𝛼1=𝛼2=16.
However, for tracking smooth trajectories like cubic
ones further ine‐tuning is reasonable, by trial and
error method. After that we have inally chosen 𝛼1 =
18, 𝛼2 = 20.

Selected simulation results are presented in
Table 3 and in Figure 9. For perfect modeling (without
disturbances), CTC‐PID is superior. But under
disturbances, MPC‐NPL provides better performance:
signi icantly better ISE values, smaller control errors
and, moreover, more smooth control trajectories,
as can be seen comparing Figures 9 and 5. Despite
the fact that Coulomb friction is present in CTC
feedback model (40), see (35), whereas it is treated
as umodeled dynamics in MPC algorithms.
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Figure 10. CTC‐PID2dof (CTC PID‐F) control, 𝑇𝐹=0.15s, with external step disturbance at at 1.25s
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Figure 11. Trajectories for MPC‐NPLn with 𝑇𝑐=0.005s and control delay 𝜏𝑢 = 𝑇𝑐, external disturbance Zu

Table 4. Values of ISE and overshoot 𝜅 for CTC‐PID2dof
and MPC‐NPL algorithms, for different disturbances,
with piecewise constant reference trajectories

CTC-PID2dof MPC-NPLn
(𝛼1=𝛼2=16, 𝑇𝐹=0.15) (𝑁=18,𝑁𝑢=2)

disturb. ISE 𝜅 disturb. ISE 𝜅
none 0.7221 0% Cf 0.6343 0%
Zu 0.6953 6% Cf+Zu 0.6191 0%
P1 0.7731 39% Cf+P1 0.6645 4%

It is generally not recommended to make abrupt
step changes of constant reference positions, when
leaving to shapemanipulator transition trajectories to
dynamics of the feedback control loop with standard

PID controllers only, as this usually leads to exces‐
sive saturation of control signals and large overshoots.
However, augmenting PID controllers by dynamic
pre iltering of piecewise constant reference signals
improves the situation. Such PID structure with a set‐
point pre ilter is usually called a PID 2dof controller.
We applied such structure to our manipulator, with
irst order inertial pre ilters with time constant 𝑇𝐹 =
0.15s, for each arm. For PID settings, we applied 𝛼1 =
𝛼2 = 16, resulting from assumed settling time 𝑡𝑠=0.5
s for both arms, see [37], to perfectly coincide with
time of cubic position change. Adding pre ilters to
CTC‐PID algorithms can be treated as a technique cor‐
responding to adding internal reference trajectories to
MPC algorithms and should, therefore, lead to a fair
comparison of both algorithms. Selected results are
presented in Table 4 and Figure 10.
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Table 5. Values of ISE for MPC‐NPL and CTC‐PID algorithms for various sampling intervals 𝑇𝑐, without and with
computational control delay 𝜏𝑢=𝑇𝑐, for cubic transition trajectories between reference positions

𝑇𝑐 𝜏𝑢
MPC-NPL CTC-PID

disturbances ISE disturbances ISE

0.01 0 Cf+Zu 0.1010⋅10−3 Zu 0.1742⋅10−3
𝑇𝑐 Cf+Zu 0.1525⋅10−3 Zu+𝜏𝑢 0.2278⋅10−3
0 Cf+P1 0.1033⋅10−3 P1 0.1561⋅10−3
𝑇𝑐 Cf+P1 0.1676⋅10−3 P1+𝜏𝑢 0.2374⋅10−3

0.005 0 Cf+Zu 0.0339⋅10−3 Zu 0.1006⋅10−3
𝑇𝑐 Cf+Zu 0.0426⋅10−3 Zu+𝜏𝑢 0.1074⋅10−3
0 Cf+P1 0.0310⋅10−3 P1 0.1485⋅10−3
𝑇𝑐 Cf+P1 0.0430⋅10−3 P1+𝜏𝑢 0.1651⋅10−3

0.0025 0 Cf+Zu 0.0113⋅10−3 Zu 0.1004⋅10−3
𝑇𝑐 Cf+Zu 0.0127⋅10−3 Zu+𝜏𝑢 0.1021⋅10−3
0 Cf+P1 0.0103⋅10−3 P1 0.1467⋅10−3
𝑇𝑐 Cf+P1 0.0122⋅10−3 P1+𝜏𝑢 0.1521⋅10−3
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Figure 12. Trajectories for MPC‐NPLn with 𝑇𝑐=0.0025s and control delay 𝜏𝑢 = 𝑇𝑐, external disturbance Zu

The results indicate that the MPC algorithm
provides better performance, especially under
disturbances. Despite pre iltering, the CTC‐PID2dof
(CTC‐PID‐F) algorithm suffers then overshoots and
slightly longer settling time (overshoots would
be much larger without pre iltering). When these
def iciences are acceptable, this algorithm could be a
design alternative.
3.4. Impact of Sampling Period and Computation Time

Delay

Model‐based algorithms need to perform more
computations than simpler PID algorithms. This can
result in tangible delay in implementation of control
signals due to computation time.

Therefore, we investigated impact of both sam‐
pling period length and control delay on performance
of algorithms considered in the paper, in particular
MPC‐NPL and CTC‐PID. Most practically important is
the delay equal to one sampling period. It means that,
using newmeasurements obtained at the beginning of
the sampling period, calculations of the newcontroller
outputmust be inishedwithin this period, to send this
output to the actuators at the end of this period (or
beginning of the next one).

The in luence of such additional unitary computa‐
tional time delay 𝜏𝑢 =𝑇𝑐 on control performance was
investigated. Selected results of comparisons are sum‐
marized in Table 5, for both cases of considered dis‐
turbances. The cases without control delays are also
given, for easy comparisons. Control with three sam‐
pling periods was investigated: 𝑇𝑐=0.01 s, 𝑇𝑐=0.005 s
and𝑇𝑐=0.0025 s. InMPC algorithms, appropriate rela‐
tion of the prediction horizon𝑁 to the process dynam‐
ics must be preserved, physically.
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That is why longer prediction horizons𝑁, given in
numbers of sampling periods, correspond to shorter
values of 𝑇𝑐 . Values of 𝑁 equal to 12, 18 and 26 were
chosen for decreasing values of 𝑇𝑐 , respectively. But
𝑁𝑢=2 could be used in all cases as effective control
horizon.

Looking at the results for MPC, it can be seen that
decreasing 𝑇𝑐 improves ISE values. Decrease by factor
2, from 0.01 s to 0.005 s, decreases ISE even more,
the same occurred for the decrease from 0.005 s to
0.0025 s. Considering resultswithout andwith control
delay, we can see that the smaller 𝑇𝑐 the smaller dif‐
ference between the corresponding values. For largest
value 𝑇𝑐=0.01, deterioration of ISE after introduction
of control delay is most visible. That is the reason
why 𝑇𝑐=0.005s has been chosen as the basic sam‐
pling period in the paper. With decrease of ISE, con‐
trol errors should decrease similarly, exemplary con‐
irmation is given by comparing Figures 11 and 12,
showing manipulator trajectories with control delay
for 𝑇𝑐=0.005 s and 0.0025 s.

Analysing results obtained with CTC‐PID control
we can see that increase of 𝑇𝑐 from 0.005 s to 0.01 s
increases ISE values signi icantly, but with decrease of
𝑇𝑐 to 0.0025 s improvement is marginal. On the other
hand,withMPC this improvementwas signi icant. The
reason is that for fast sampling PID tuning is as for
continuous‐time control. Therefore, the faster sam‐
pling the better discrete‐time PID controller mimics
continuous‐time PID one and the smaller differences
when decreasing the sampling period. For obvious
reasons, the smaller 𝑇𝑐 the less the negative impact of
computational delay.

4. Conclusion
Application of effective and most up‐to‐date non‐

linear MPC algorithms with state‐space models to
manipulator control was presented, in comparison
with standard and enhanced realizations of CTC‐
PID algorithms. MPC algorithms were presented with
most effective, recently proposed disturbance atten‐
uation technique [30], which avoids necessity of
dynamic modeling of disturbances, both external or
internal, or to resort to alternative additional tech‐
niques to attenuate disturbances, like SMC, as met in
several papers on MPC control of manipulators.

The core of the paper is computationally effective
MPC‐NPL algorithm (Nonlinear Prediction with Lin‐
earization), presented in two versions: the irst with
constrained QP optimization and the second, compu‐
tationally simpler, with unconstrained optimization
and a posteriori matching the unconstrained result
with inequality constraints. Detailed discussion on
organization of calculations leading to shortest execu‐
tion time was provided for MPC‐NPL algorithms. For
all algorithms a comprehensive comparative simula‐
tion study was presented in the paper, with exper‐
imental direct drive manipulator, under signi icant
external and parametric disturbances. Results were
compared with those obtained with known CTC‐PID
algorithm, which is also model‐based and using the

nonlinear manipulator model. The comparisons were
performed for two shapes of reference trajectories:
smooth cubic or piecewise constant. For the second
case, MPC with additional internal reference trajecto‐
ries and CTC‐PID2dof algorithm have been proposed
and shown to lead to practically useful results, which
seems to be a novelty in manipulator control litera‐
ture. For all considered cases, theMPC‐NPLalgorithms
have been shown to perform better or signi icantly
better than CTC‐PID algorithms. However, when cer‐
tain deterioration in accuracy and small overshoots
(which can occur after step changes of reference tra‐
jectories) are acceptable, CTC‐PID or CTC‐PID2dof
algorithms could be a design alternative.

Additional contribution of the paper is investiga‐
tion of the in luence of sampling period length and
computational delay on performance ofMPC and CTC‐
PID algorithms. This is important for design of model‐
based control algorithms with fast sampling, as they
require more computations.

It is believed that the results presented in
the paper should be interesting for both applied
researchers and industrial practitioners in the ield of
manipulator control.
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