Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, a new physical model has been created to look into the behaviour of transient incompressible unsteady flow between two infinite parallel plates exposed to high temperatures. The model takes into consideration thermal radiation flux, chemical reaction, and mass diffusion at the boundaries. To handle non-integer behaviour, the model incorporates the Caputo notion of time fractional derivative. To solve this complex physical fractional order fluid model, a novel optimal homotopy asymptotic method and semi-analytical methodology is extended and utilized successfully. This method provides a third-order highly approximate solution, offering valuable insights into the behaviour within the system. The study comprehensively examines the effects of varied flow characteristics and fractional order on the dynamics of the system. The results are visually presented through graphs, offering a clear understanding of the system's response under different conditions. The effectiveness and ease of use of the optimal homotopy asymptotic method make it a valuable tool for solving boundary value fractional order problems encountered in scientific fields. The developed physical model and its fractional extension contribute significantly to the understanding of unsteady flow phenomena with thermal and chemical effects, advancing knowledge in this area of research.
Czasopismo
Rocznik
Tom
Strony
139--144
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
- Institute of Mathematics, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab 64200, Pakistan
autor
- Institute of Mathematics, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab 64200, Pakistan
autor
- Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
autor
- Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
autor
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
autor
- Department of Mathematics, Air University, PAF Complex E-9, Islamabad 44000, Pakistan
Bibliografia
- [1] Marneni, N. (2008). Transient free convection flow between two long vertical parallel plates with constant temperature and mass diffusion. Proceedings of the World Congress on Engineering, II, 2-4 July, London, U.K.
- [2] Harris, S.D., Ingham, D.B., & Pop, I. (1996). Transient free convection from a vertical plate subjected to a change in surface heat flux in porous media. Fluid Dynamic Research, 18, 313324. doi:10.1016/0169-5983(96)00025-1
- [3] Harris, S.D., Elliott, L., & Ingham, D.B. (1998). Transient free convection flow past a vertical flat plate subject to a sudden change in surface temperature. International Journal of Heat and Mass Transfer, 41, 357372. doi: 10.1016/S0017-9310(97)00136-1
- [4] Sharma, R., & Ishak, A. (2013). Numerical simulation of transient free convection flow and heat transfer in a porous medium. Mathematical Problems in Engineering, 2013, 1–9. doi: 10.1155/2013/371971
- [5] Sharma, R., Ishak, A., & Pop, I. (2013). Partial slip flow and heat transfer over a stretching sheet in a nanofluid. Mathematical Problems in Engineering, 2013, 1–7. doi: 10.1155/2013/724547
- [6] Asjad, M.I., Danish Ikram, M., & Akgül, A. (2020). Analysis of MHD viscous fluid flow through porous medium with novel power law fractional differential operator. Physica Scripta, 95(11), 115209. doi: 10.1088/1402-4896/abbe4f
- [7] Sarwar, S., Aleem, M., Imran, M. A., & Akgül, A. (2024). A comparative study on non‐Newtonian fractional‐order Brinkman type fluid with two different kernels. Numerical Methods for Partial Differential Equations, 40(1). doi: 10.1002/num.22688
- [8] Marinca, V., & Herişanu, N. (2008). Application of Optimal Homotopy Asymptotic Method for solving nonlinear equations arising in heat transfer. International Communications in Heat and Mass Transfer, 35(6), 710–715. doi: 10.1016/j.icheatmasstransfer.2008.02.010
- [9] Marinca, V., & Herişanu, N. (2010). Determination of periodic solutions for the motion of a particle on a rotating parabola by means of the optimal homotopy asymptotic method. Journal of Sound and Vibration, 329(9), 1450–1459. doi: 10.1016/j.jsv.2009.11.005
- [10] Sarwar, S., Alkhalaf, S., Iqbal, S., & Zahid, M.A. (2015). A note on optimal homotopy asymptotic method for the solutions of fractional order heat- and wave-like partial differential equations. Computers & Mathematics with Applications, 70(5), 942–953. doi: 10.1016/j.camwa.2015.06.017.
- [11] Sarwar, S., & Rashidi, M.M. (2016). Approximate solution of two-term fractional-order diffusion, wave-diffusion, and telegraph models arising in mathematical physics using optimal homotopy asymptotic method. Waves in Random and Complex Media, 26(3), 365–382. doi: 10.1080/17455030.2016.1158436
- [12] Sarwar, S., & Iqbal, S. (2018). Stability analysis, dynamical behavior and analytical solutions of nonlinear fractional differential system arising in chemical reaction. Chinese Journal of Physics, 56(1), 374–384. doi: 10.1016/j.cjph.2017.11.009
- [13] Ojemeri, G., & Hamza, M.M. (2022). Heat transfer analysis of Arrhenius-controlled free convective hydromagnetic flow with heat generation/absorption effect in a micro-channel. Alexandria Engineering Journal, 61(12), 12797–12811. doi: 10.1016/j.aej.2022.06.058
- [14] Bhatti, M.M., Bég, O.A., Ellahi, R., & Abbas, T. (2022). Natural convection non-Newtonian EMHD dissipative flow through a microchannel containing a non-Darcy porous medium: Homotopy perturbation method study. Qualitative Theory of Dynamical Systems, 21(4). doi: 10.1007/s12346-022-00625-7
- [15] Hamza, M.M., Ojemeri, G., & Ahmad, S.K.K. (2023). Theoretical study of Arrhenius‐controlled heat transfer flow on natural convection affected by an induced magnetic field in a micro‐ channel. Engineering Reports: Open Access, 5(8). doi: 10.1002/eng2.12642
- [16] Ajibade, A.O., Gambo, J.J., & Jha, B.K. (2023). Effects of viscous and Darcy dissipation on fully developed natural convection flow in a composite channel partially filled with porous material: Homotopy perturbation method (HPM). Zeitschrift fur Angewandte Mathematik und Mechanik, 103(6). doi: 10.1002/zamm.202100583
- [17] Ray, A.K., Vasu, B., Murthy, P.V.S.N., & Gorla, R.S.R. (2020). Non-similar solution of Eyring–Powell fluid flow and heat transfer with convective boundary condition: Homotopy Analysis Method. International Journal of Applied and Computational Mathematics, 6(16), 1-22. doi: 10.1007/s40819-019-0765-1
- [18] Kędzia, K. (2022). A method of determining optimal parameters for the secondary energy source of a multisource hydrostatic drive system in machines working in closed spaces. Energies,15(14), 5132. doi: 10.3390/en15145132
- [19] Szelka, M., Drwięga, A., Tokarczyk, J., Szyguła, M., Szewerda, K., Banaś, M., Kołodziejczyk, K., & Kędzia, K. (2023). Study of the blade shape impact on the improvement of fan efficiency based on state-of-the-art prototyping methods. Energies, 16(1),542. doi: 10.3390/en16010542
- [20] Świder, J., Szewerda, K., Tokarczyk, J., Plewa, F., Grodzicka, A., & Kędzia, K. (2023). An overview of possibilities of increasing the permissible speed of underground suspended monorails for transporting people in the conditions of Polish underground mining. Energies, 16(9), 3703. doi: 10.3390/en16093703
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-574c9fd2-32ed-4800-9104-8fe3c3eb6522
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.