Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Surfactants in the form of liquid foam are commonly used for ensuring the fluidity of conditioned soil during shield tunneling in mining zone. The compressibility can be significantly affected, depending on the percentage of fine soil. Thus, this paper investigates the compressibility of foam-conditioned fine soil. Oedometric tests as a function of the percentage of foam have been performed. Foam's stability was analyzed, considering a laboratory soil made from 40% kaolinite and 60% of sand and mixed with a foaming agent based on an anionic surfactant. Experimental results showed that the foam stability was manifested through a reduction of the foam's volume followed by liquid drainage, under loading and due to the foam's physical degradation over time. The compressibility increases with the adding rate of the foam in the soil. Therefore, consolidation and foam's degradation over time are two factors that allow the recovery of the compressibility property of conditioned soil.
Wydawca
Czasopismo
Rocznik
Tom
Strony
316--331
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
- Université de Lyon, Centrale Lyon-ENISE, Laboratoire de Tribologie et Dynamique des Systèmes, Saint Etienne, France
- Tunis El Manar University, National Engineering School of Tunis, Civil Engineering Department, Tunisia
autor
- Northern Border University, Civil Engineering Department, Engineering College, Arar, Saudi Arabia
autor
- Université de Lyon, Centrale Lyon-ENISE, Laboratoire de Tribologie et Dynamique des Systèmes, Saint Etienne, France
- Ecole Centrale de Pekin, Beihang University, Beijing, China
autor
- Northern Border University, Civil Engineering Department, Engineering College, Arar, Saudi Arabia
Bibliografia
- [1] Hollmann FS, Thewes M. Assessment method for clay clogging and disintegration of fines in mechanised tunnelling. Tunn Undergr Space Technol 2013;37:96-106. https://doi.org/10.1016/j.tust.2013.03.010.
- [2] Vinai Raffaele, Borio L, Peila Daniele, Oggeri Claudio, Pelizza Sebastiano. Soil conditioning for EPBMs. Tunnels Tunn Int 2008:25-6.
- [3] Milligan G. Lubrication and soil conditioning in tunnelling , pipe jacking and microtunnelling a state-of-the-art review. Rev Liter Arts Am 2000;vol. 44.
- [4] Filbà M, Salvany JM, Jubany J, Carrasco LA. Tunnel boring machine collision with an ancient boulder beach during the excavation of the Barcelona city subway L10 line : a case of adverse geology and resulting engineering solutions. Eng Geol 2016;200:31-46. https://doi.org/10.1016/j.enggeo.2015.11.010.
- [5] Azali ST, Ghafoori M, Lashkaripour GR, Hassanpour J. Engineering geological investigations of mechanized tunneling in soft ground : a case study, EasteWest lot of line 7, Tehran Metro, Iran. Eng Geol 2013;166:170-85. https://doi.org/10.1016/j.enggeo.2013.07.012.
- [6] Mori L, Mooney MA, Cha M. Characterizing the influence of stress on foam conditioned sand for EPB tunneling. Tunn Undergr Space Technol 2018;71:454-65. https://doi.org/10.1016/j.tust.2017.09.018.
- [7] Psomas S. Properties of foam/sand mixtures for tunnelling applications. A thesis submitted for the degree of master of science to the University of Oxford. 2001. Michaelmas.
- [8] Hajialilue-Bonab M, Hassan S, Adam B. Experimental study on foamed sandy soil for EPBM tunnelling. Int J Adv Rail Eng (IJARE) 2014;2(1):27-40.
- [9] Rio E, Biance A. Thermodynamic and mechanical timescales involved in foam film rupture and liquid foam coalescence. ChemPhysChem 2014;15(17):3692-707. https://doi.org/10.1002/cphc.201402195.
- [10] Koehler SA, Hilgenfeldt S, Stone HA. Liquid flow through aqueous foams : the node-dominated foam drainage equation. Phys Rev Lett 1999;82(21):4232-5. https://doi.org/10.1103/physrevlett.82.4232.
- [11] Koehler SA, Hilgenfeldt S, Stone HA. A generalized view of foam drainage: experiment and theory. Langmuir 2000; 16(15):6327-41. https://doi.org/10.1021/la9913147.
- [12] Brannigan G, De Alcantara Bonfim OF. Boundary effects on forced drainage through aqueous foam. Phil Mag Lett 2001; 81(3):197-201. https://doi.org/10.1080/09500830010017079.
- [13] Khristov K, Exerowa D, Minkov G. Critical capillary pressure for destruction of single foam films and foam : effect of foam film size. Coll Surf, A Physicochem Eng Asp 2002;210(2-3): 159-66. https://doi.org/10.1016/s0927-7757(02)00377-1.
- [14] Eisner MD, Jeelani S, Bernhard L, Windhab EJ. Stability of foams containing proteins, fat particles and nonionic surfactants. Chem Eng Sci 2007;62(7):1974-87. https://doi.org/10.1016/j.ces.2006.12.056.
- [15] Wu Y, Mooney M, Cha M. An experimental examination of foam stability under pressure for EPB TBM tunneling. Tunn Undergr Space Technol 2018;77:80-93. https://doi.org/10.1016/j.tust.2018.02.011.
- [16] Sebastiani D, Ochando-Pulido JM, Bavasso I, Di Palma L, Miliziano S. Classification of foam and foaming products for EPB mechanized tunnelling based on half-life time. Tunn Undergr Space Technol 2019;92:103044. https://doi.org/10.1016/j.tust.2019.103044.
- [17] Almajid MM, Kovscek AR. Pore-level mechanics of foam generation and coalescence in the presence of oil. Adv Colloid Interface Sci 2016;233:65-82. https://doi.org/10.1016/j.cis.2015.10.008.
- [18] Safouane M, Saint-Jalmes A, Bergeron V, Langevin D. Viscosity effects in foam drainage : Newtonian and non-Newtonian foaming fluids. Eur Phys J - 2006;19(2):195-202. https://doi.org/10.1140/epje/e2006-00025-4.
- [19] Fameau A, Salonen A. Effect of particles and aggregated structures on the foam stability and aging. Compt Rendus Phys 2014;15(8-9):748-60. https://doi.org/10.1016/j.crhy.2014.09.009.
- [20] Cohen-Addad S, Krzan M, Hohler R, Herzhaft B. Rigidity percolation in particle-laden foams. Phys Rev Lett 2007; 99(16). https://doi.org/10.1103/physrevlett.99.168001.
- [21] Carn F, Colin A, Pitois O, Vignes-Adler M, Backov R. Foam drainage in the presence of Nanoparticle-Surfactant mixtures. Langmuir 2009;25(14):7847-56. https://doi.org/10.1021/la900414q.
- [22] Duarte MAP. Foam as a soil conditioner in tunnelling : physical and mechanical properties of conditioned sands. 2007. https://doi.org/10.1002/geot.201000023.
- [23] Peila D, Oggeri C, Vinai R. Screw conveyor device for laboratory tests on conditioned soil for EPB tunneling operations. J Geotech Geoenviron Eng 2007;133(12):1622-5. https://ascelibrary.org/doi/abs/10.1061/%28ASCE%291090-0241%282007%29133%3A12%281622%29.
- [24] Thewes M, Budach C. Soil conditioning with foam during EPB tunnelling/. Konditionierung von Lockergesteinen bei Erddruckschilden. Geomech Und Tunnelbau 2010;3(3): 256-67. https://doi.org/10.1002/geot.201000023.
- [25] Merritt AS, Mair RJ. Mechanics of tunnelling machine screw conveyors : model tests. Geotechnique 2006;56(9):605-15. https://doi.org/10.1680/geot.2006.56.9.605.
- [26] Vinai R, Oggeri C, Peila D. Soil conditioning of sand for EPB applications : a laboratory research. Tunn Undergr Space Technol 2008;23(3):308-17. https://doi.org/10.1016/j.tust.20 07.04.010.
- [27] Salazar CD, Todaro C, Bosio F, Bassini E, Ugues D, Peila D. A new test device for the study of metal wear in conditioned granular soil used in EPB shield tunneling. Tunn Undergr Space Technol 2018;73:212-21. https://doi.org/10.1016/j.tust.2017.12.014.
- [28] Wu H, Huo J, Meng Z, Xue L, Xie L, Zhang Z. Load characteristics study with a multi-coupling dynamic model for TBM supporting system based on a field strain test. Tunn Undergr Space Technol 2019;91:103016. https://doi.org/10.1016/j.tust.2019.103016.
- [29] Vinai R, Borio L, Peila D, Oggeri C, Pelizza S. Soil conditioning for EPBMs (2008). Tunnels Tunn Int 2008 Dec 1;(DEC):25-6.
- [30] Budach C, Thewes M. Application ranges of EPB shields in coarse ground based on laboratory research. Tunn Undergr Space Technol 2015;50:296-304. https://doi.org/10.1016/j.tust.2015.08.006.
- [31] EFNARC. Specification and Guidelines for the use of specialist products for mechanised tunnelling (TBM) in soft ground and hard rock. Surry. In: European Federation for Specialist Construction Chemicals and Concrete Systems; 2005 April; 2005.
- [32] Jürg Z, Dettwiler J, Zach C. Reuse of (Soil excavation guideline). 2001. Berne.
- [33] Support of the cavity and settlement. Dans Wiley-VCH Verlag GmbH & Co. KGaA eBooks; 2012. p. 25-46. https://doi.org/10.1002/9783433601051.ch2.
- [34] Peila D, Oggeri C, Borio L. Using the slump test to assess the behavior of conditioned soil for EPB tunneling. Environ Eng Geosci 2009;15(3):167-74. https://doi.org/10.2113/gseegeosci.15.3.167.
- [35] Thewes M, Budach C. Soil conditioning with foam during EPB tunnelling/Konditionierung von Lockergesteinen bei Erddruckschilden. Geomechanik Und Tunnelbau 2010;3(3): 256-67. https://doi.org/10.1002/geot.201000023.
- [36] Selmi M, Kacem M, Jamei M, Dubujet P. Experimental and modeling of shear mechanical behavior of soil conditioned with foaming agent. Int J Innov Technol Expl Eng (IJITEE) 2019;8(11). https://doi.org/10.35940/ijitee.K1912.0981119. ISSN: 2278-3075.
- [37] Selmi M, Kacem M, Jamei M, Dubujet P. Physical foam stability of loose sandy-clay: a porosity role in the conditioned soil. Water Air Soil Pollut 2020;231:251. https://doi.org/10.1007/s11270-020-04598-8.
- [38] Oggeri C, Fenoglio TM, Vinai R. Tunnel spoil classification and applicability of lime addition in weak formations for muck reuse. Tunn Undergr Space Technol 2014;44:97-107. https://doi.org/10.1016/j.tust.2014.07.013.
- [39] Caracciolo AB, Cardoni M, Pescatore T, Patrolecco L. Characteristics and environmental fate of the anionic surfactant sodium lauryl ether sulphate (SLES) used as the main component in foaming agents foœr mechanized tunnelling. Environ Pollut 2017;226:94-103. https://doi.org/10.1016/j.envpol.2017.04.008.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5748d5cf-073d-4fa5-acc7-7d117e566c41