PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of environmental factors on the population dynamics of key zooplankton species in the Gulf of Gdańsk (southern Baltic Sea)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We studied the influence of abiotic environmental factors on the seasonal population dynamics' of Acartia spp., Temora longicornis and Pseudocalanus sp. in the southern Baltic Sea in the period of 2006-2007 and 2010-2012. Zooplankton samples were being collected monthly AT 6 stations located in the western part of the Gulf of Gdańsk with aWP2 net (100 μm mesh sizes) and then analyzed according to the HELCOM guidelines. Although the sampling stations did not significantly differ from each other in the terms of variability of abiotic environmental factors, the biomass of copepods developmental stages differed between them, apart from the shallow stations in both, Gulf of Gdańsk and in its inner part — Puck Bay. According to redundancy analysis, 26.1% of the total variability observed in the biomass of the copepod species has been explained by water temperature, salinity, air temperature, cloudiness, wind speed and direction and station's depth, with the first variable having the greatest power, alone explaining 13.7%. ANOSIM revealed that sampling stations in the Gulf of Gdańsk were significantly different from one another in terms of copepods' biomasses. Generalized Additive Models fitted for water temperature and salinity were significant for all ontogenetic stages of Acartia spp. and Temora longicornis and for the majority of stages of Pseudocalanus sp. (apart from the C1 for both and the males for salinity).
Czasopismo
Rocznik
Strony
17--25
Opis fizyczny
Bibliogr. 51 poz., mapa, tab., wykr.
Twórcy
  • Institute of Oceanography, University of Gdańsk, Gdynia, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanography, University of Gdańsk, Gdynia, Poland
Bibliografia
  • [1] Ackefors, H., 1969. Seasonal and vertical distribution of zooplankton in the Askö area (Northern Baltic proper) in relation to hydrographical conditions. Oikos 20 (2), 480-492, http://dx.doi.org/10.2307/3543210.
  • [2] Allen, J. L., Anderson, D., Burford, M., Dyhrman, S., Flynn, K., Gilbert, P. M., Grane'li, E., Heil, C., Sellner, K., Smayda, T., Zhou, M., 2006. Global ecology and oceanography of harmful algal blooms in eutrophic systems. GEOMA Breport 4. IOC and SCOR, Paris, Baltimore, MD, 1-74.
  • [3] Bielecka, L., Gaj, M., Mudrak, S., Żmijewska, M. I., 2000. The seasonal and short term changeability of zooplankton taxonomic composition in the shallow coastal area of the Gulf of Gdańsk. Oceanol. Stud. 29 (1), 57-76.
  • [4] Bossicart, M., 1980. Population dynamics of copepods in the Southern Bight of the North Sea (1977-1979), use of a multicohort model to derive biological parameters. In: Coun. Meet. Explor. Sea C.M.-ICES/L:24 ICES CM L:24.
  • [5] Chiba, S., Aita, M. N., Tadokoro, K., Saino, T., Sugisaki, H., Nakata, K., 2008. From climate regime shifts to lower-trophic level phenology: synthesis of recent progress in retrospective studies of the western North Pacific. Prog. Oceanogr. 77, 112-126, http://dx.doi.org/10.1016/j.pocean.2008.03.004.
  • [6] Chojnacki, J., Antończak, E., 2008. Seasonal changes in the neritic zone mesozooplankton of Pomeranian Bay in 2000. Electron. J. Polish Agric. Univ. 11 (4), 29.
  • [7] Chojnacki, J., Drzycimski, I., 1976. The southern Baltic zooplankton in spring and summer 1974. Ann. Biol. Cons. Perm. Int. Explor. Mer, Copenhagen 31, 72-73.
  • [8] Chojnacki, J., Drzycimski, I., Maslowski, J., Radziejewska, T., Strzelichowski, M., 1975. Zooplankton of the southern Baltic in 1972-1973. Ann. Biol. Cons. Perm. Int. Explor. Mer, Copenhagen 30, 73-74.
  • [9] Clarke, K. R., Warwick, R. M., 1994. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation. Natural Environment Research Council, UK, 144 pp.
  • [10] Cushing, D. H., 1995. The long-term relationship between zooplankton and fish. ICES J. Mar. Sci. 52 (3-4), 611-626, http://dx.doi.org/10.1016/1054-3139(95)80076-X.
  • [11] Dahlgren, K., Eriksson Wiklund, A.-K., Andersson, A., 2011. The influence of autotrophy, heterotrophy and temperature on pelagic food web efficiency in a brackish water system. Aquat. Ecol. 45, 307-323, http://dx.doi.org/10.1007/s10452-011-9355-y.
  • [12] Dippner, J. W., Kornilovs, G., Siedrevics, L., 2000. Long-term variability of mesozooplankton in the central Baltic Sea. J. Mar. Syst. 25 (1), 23-31, http://dx.doi.org/10.1016/S0924-7963(00)00006-3.
  • [13] Dzierzbicka-Głowacka, L., Żmijewska, M. I., Mudrak, S., Jakacki, J., Lemieszek, A., 2010. Population modelling of Acartia spp. in a water column ecosystem model for the South-Eastern Baltic Sea. Biogeosciences 7 (7), 2247-2259, http://dx.doi.org/10.5194/bg-7-2247-2010.
  • [14] Dzierzbicka-Głowacka, L., Kalarus, M., Żmijewska, M. I., 2013. Interannual variability in the population dynamics of the main meso-zooplankton species in the Gulf of Gdańsk (southern Baltic Sea): seasonal and spatial distribution. Oceanologia 55 (2), 409-434, http://dx.doi.org/10.5697/oc.55-2.409.
  • [15] Evans, F., 1977. Seasonal density and production estimates of the commoner planktonic copepods of Northhumberland coastal waters. Estuar. Coast. Mar. Sci. 5 (2), 233-241, http://dx.doi.org/10.1016/0302-3524(77)90019-6.
  • [16] Flinkman, J., Vuorinen, I., Aro, E., 1992. Planktivorous Baltic Herling (Clupea harengus) prey selectively on reproducing copepods and cladocerans. Can. J. Fish. Aquat. Sci. 49 (1), 73-77, http://dx.doi.org/10.1139/f92-008.
  • [17] Fransz, H. G., Colebrook, J. M., Gamble, J. C., Krause, M., 1991. The zooplankton of the North Sea. Neth. J. Sea Res. 28 (1-2), 1-52, http://dx.doi.org/10.1016/0077-7579(91)90003-J.
  • [18] Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L., Heinsohn, R., 2011. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285-291, http://dx.doi.org/10.1016/j.tree.2011.03.005.
  • [19] Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., Medina-Elizade, M., 2006. Global temperature change. PNAS 103, 14288-14293, http://dx.doi.org/10.1073/pnas.0606291103.
  • [20] Hays, G. C., Richardson, A. J., Robinson, C., 2005. Climate change and plankton. Trends Ecol. Evol. 20, 337-344, http://dx.doi.org/10.1016/j.tree.2005.03.004.
  • [21] HELCOM, 2015. Manual for Marine Monitoring in the COMBINE Programme of HELCOM. http://helcom.fi/action-areas/monitoring-and-assessment/manuals-and-guidelines/combine-manual/, (accessed 10.09.16).
  • [22] Hinrichsen, H. H., Möllmann, C., Voss, R., Köster, F. W., Kornilovs, G., 2002. Biophysical modeling of larval Baltic cod (Gadus morhua) growth and survival. Can. J. Fish. Aquat. Sci. 59 (12), 1858-1873, http://dx.doi.org/10.1139/f02-149.
  • [23] Hogfors, H., Motwani, N. H., Hajdu, S., El-Shehawy, R., Holmborn, T., Vehmaa, A., Engström-Öst, J, Brutemark, A, Gorokhova, E., 2014. Bloom-forming cyanobacteria support copepod reproduction and development in the Baltic Sea. PLOS ONE 9 (11) e112692, eCollection 2014, https://doi.org/10.1371/journal.pone.0112692.
  • [24] Holste, L., St John, M., Peck, M. A., 2008. The effects of temperature and salinity on reproductive success of Temora longicornis in the Baltic Sea: a copepod coping with a tough situation. Mar. Biol. 156 (4), 527-540, http://dx.doi.org/10.1007/s00227-008-1101-1.
  • [25] Józefczuk, A., Guzera, E., Bielecka, L., 2003. Short-term and seasonal variability of mesozooplankton at two coastal stations (Gdynia, Sopot) in the shallow water zone of the Gulf of Gdańsk. Oceanologia 45 (1), 317-336.
  • [26] Legendre, P., 1990. Quantitative methods and biogeographic analysis. In: Evolutionary Biogeography of the Marine Algae of the North Atlantic. Springer-Verlag, Berlin Heidelberg, 9-35.
  • [27] Lemieszek, A., 2013. The Population Dynamics of Temora longicornis in the Southern Baltic Sea. (PhD Thesis). Univ. Gdańsk, Gdynia, (in Polish).
  • [28] Lennuk, L., Kotta, J., Lauringson, V., Traits, K., Jänes, H., 2016. Which environmental scales and factors matter for meso zooplankton communities in a shallow brackish water ecosystem? J. Plankton Res. (38), 1-15, http://dx.doi.org/10.1093/plankt/fbv111.
  • [29] Mauchline, J., 1998. The biology of calanoid copepods. In: Advances in Marine Biology. Acad. Press 33, 710 pp.
  • [30] Meier, H. E. M., Hordoir, R., Andersson, H. C., Dieterich, C., Eilola, K., Gustafsson, B. G., Schimanke, S., 2012. Modelling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961-2099. Clim. Dyn. 39, 2421-2441, http://dx.doi.org/10.1007/s00382-012-1339-7.
  • [31] Mudrak, S., 2004. Short- and Long-Term Variability of Zooplankton in Coastal Baltic Waters: Using the Gulf of Gdańsk as an Example. (PhD Thesis). Univ. Gdańsk, Gdynia, (in Polish).
  • [32] Mudrak, S., Żmijewska, M. I., 2006. Spatio-temporal variability of mesozooplankton from the Gulf of Gdańsk (Baltic Sea) in 1999-2000. Oceanol. Hydrobiol. St. 36 (2), 3-19, http://dx.doi.org/10.2478/v10009-007-0007-4.
  • [33] Möllmann, C., Köster, F. W., 1999. Food consumption by clupeids in the central Baltic: evidence for top-down control. ICES J. Mar. Sci. 56, 110-113, http://dx.doi.org/10.1006/jmsc.1999.0630.
  • [34] Möllmann, C., Kornilovs, G., Sidrevics, L., 2000. Long-term dynamics of main mesozooplankton species in the central Baltic Sea. J. Plankton Res. 22 (11), 2015-2038, http://dx.doi.org/10.1093/plankt/22.11.2015.
  • [35] Möllmann, C., Köster, F. W., 2002. Population dynamics of Calanoid copepods and the implications of their predation by clupeid fish in the Central Baltic Sea. J. Plankton Res. 24, 959-978.
  • [36] Möllmann, C., Köster, F. W., Kornilovs, G., Sidrevics, L., 2003. Interannual variability in population dynamics of calanoid copepods in the central Baltic Sea. ICES Mar. Sci. 219, 220-230.
  • [37] Ojaveer, H., Simm, M., Lankov, M., Lumberg, A., 2000. Consequences of invasion of a predatory cladoceran. ICES International Council for the Exploration of the Sea, C.M. 2000/U:16.
  • [38] Otto, S. A., Kornilovs, G., Llope, M., Möllmann, C., 2014. Interactions among density, climate, and food web effects determine long-term life cycle dynamics of a key copepod. Mar. Ecol. Prog. Ser. 498 (73), U408, http://dx.doi.org/10.3354/meps10613.
  • [39] Pineda, J., 2000. Linking larval settlement to larval transport: assumptions, potentials, and pitfalls. Oceanogr. East. Pac. 1, 84-105.
  • [40] Polovina, J., Woodworth, P. A., 2012. Declines in phytoplankton cell size in the subtropical oceans estimated from satellite remotelysensed temperature and chlorophyll, 1998-2007. Deep-Sea Res. Pt. II 77, 82-88.
  • [41] Renz, J., Hirche, H. J., 2005. Life cycle of Pseudocalanus acuspes Giesbrecht (Copepoda, Calanoida) in the Central Baltic Sea: I. Seasonal and spatial distribution. Mar. Biol. 248, 567-580, http://dx.doi.org/10.1007/s00227-005-0103-5.
  • [42] Richardson, A. J., 2008. In hot water: zooplankton and cli mate change. ICES J. Mar. Sci. 65, 279-295, http://dx.doi.org/10.1093/icesjms/fsn028.
  • [43] Sparholt, H., 1994. Fish species interactions in the Baltic Sea. Dana 10, 131-162.
  • [44] Suikkanen, S., Laamanen, M., Huttunen, M., 2007. Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuar. Coast. Shelf Sci. 71, 580-592, http://dx.doi.org/10.1016/j.ecss.2006.09.004.
  • [45] Śliwińska-Wilczewska, S., Latała, A., 2017. Oddziaływania allelopatyczne sinic i mikroglonów w środowisku wodnym. Kosmos 66 (2), 217-224.
  • [46] Ter Braak, C. J. F., Šmilauer, P., 2012. Canoco Reference Manual and User's Guide: Software for Ordination, Version 5.0. Microcomputer Power, Ithaca, USA.
  • [47] Thackeray, S. J., 2012. Mismatch revisited: what is trophic mismatching from the perspective of the plankton? J. Plankton Res. 34, 1001-1010, http://dx.doi.org/10.1093/plankt/fbs066.
  • [48] The BACC II, Author Team, 2008. Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Springer Int. Publ., 1-22, http://dx.doi.org/10.1007/978-3-319-16006-1.
  • [49] Vuorinen, I., Hänninen, J., Viitasalo, M., Helminen, U., Kuosa, H., 1998. Proportion of copepod biomass declines with decreasing salinity in the Baltic Sea. ICES J. Mar. Sci. 55 (4), 767-774, http://dx.doi.org/10.1006/jmsc.1998.0398.
  • [50] Weydmann, A., Zwolicki, A., Muś, K., Kwaśniewski, S., 2015. The effect of temperature on egg development rate and hatching success in Calanus glacialis and C. finmarchicus. Polar Res. 34 (1), 23947, http://dx.doi.org/10.3402/polar.v34.23947.
  • [51] Weydmann, A., Walczowski, W., Carstensen, J., Kwaśniewski, S., 2018. Warming of Subarctic waters accelerates development of a key marine zooplankton Calanus finmarchicus. Glob. Change. Biol. 24, 172-183, http://dx.doi.org/10.1111/gcb.13864.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57457055-1d83-4f47-9324-348561190316
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.