Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The compact installation and technology for determining vibration characteristics by the ESPI method has been created. The experimental determination of the dynamic characteristics of a diamond circular blade with a diameter of 203.4 mm and a thickness of 1.19 mm using real-time electronic speckle interferometry is presented. 15 mode shapes of vibration were detected in the range from 100 to 5000 Hz. The program calculation of the natural frequencies and mode shapes is carried out for three values of the clamping inner diameter (42 mm, 44 mm, 46 mm). The options for calculating a disk with a rim and without a rim are considered. It is shown that the minimum mean squared error of the calculation is achieved for the values of the diameter of the disk 46 mm, 42 mm and 44 mm for the number of nodal circles 0, 1 and 2, respectively. To verify the accuracy of the interferometer, experimental, computational and analytical studies of console steel rod 200 x 22.25 x 3.78 mm in size were carried out.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
16--23
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
- Department of Engineering Mechanics and Technology of Marine Engineering, Engineering and Research Institute of Engineering, Admiral Makarov National University of Shipbuilding, Mykolaiv, 9 Heroes of Ukraine Avenue, Ukraine
autor
- Department of Engineering Mechanics and Technology of Marine Engineering, Engineering and Research Institute of Engineering, Admiral Makarov National University of Shipbuilding, Mykolaiv, 9 Heroes of Ukraine Avenue, Ukraine
autor
- Department of Engineering Mechanics and Technology of Marine Engineering, Engineering and Research Institute of Engineering, Admiral Makarov National University of Shipbuilding, Mykolaiv, 9 Heroes of Ukraine Avenue, Ukraine
autor
- Department of Automation and Computer-Integrated Technologies, Faculty of Computer Science, Petro Mohyla Black Sea National University, Mykolaiv, street 68 Desantnikov 10, Ukraine
autor
- Department of Engineering Mechanics and Technology of Marine Engineering, Engineering and Research Institute of Engineering, Admiral Makarov National University of Shipbuilding, Mykolaiv, 9 Heroes of Ukraine Avenue, Ukraine
autor
- Department of Engineering Mechanics and Technology of Marine Engineering, Engineering and Research Institute of Engineering, Admiral Makarov National University of Shipbuilding, Mykolaiv, 9 Heroes of Ukraine Avenue, Ukraine
Bibliografia
- 1. Babakov I.M. (1965), Theory of vibrations [Teorija kolebanil], Science [Nauka]. [In Russian]
- 2. Beeck M.A., Hentschel W. (2000), Laser metrology - a diagnostic tool in automotive development processes, Optics and Lasers in Engineering, 34(2), 101–120.
- 3. Bystrov, N. D., Zhuzhukin, A. I. (2017), Speckle Interferometry in the Investigation of Large-Size Turbine Engine Structures Vibration, Procedia Engineering., 176: 471–475.
- 4. Careva A.M., Tupoleva A.N. (2006), Application of an experimental calculation method for determining resonant frequencies and vibration modes of a disk of constant thickness [Primenenie eksperimentalno-raschetnogo metoda dlya opredeleniya rezonansnyh chastot i form kolebanij diska postoyannoj tolshiny], Kama State Academy of Engineering and Economics [Kamskaya gosudarstvennaya inzhenerno-ekonomicheskaya akademiya]. [In Russian]
- 5. Chi-Hung H., Yu-Chih L., Chien-Ching M. (2004) Theoretical analysis and experimental measurement for resonant vibration of piezoceramic circular plates, IEEE Transactions On Ultrasonics, Ferroelectrics, And Frequency Control, 51(1), 12-24.
- 6. Chladni. E., Beyer T. (2015), Treatise on Acoustics, Springer International Publishing Switzerland.
- 7. Foitzik A.H., Kaese W., Vogt T., Sommerer M., Arkhipov S. (2003), Static and Dynamic Characterization of MEMS via ESPI, International Journal Of Computational Engineering Science, 4(3), 467–470.
- 8. Gorbatenko B.B., Lyakin D.V., Perepelitsyna O.A., Ryabukho V.P. (2001), Optical schemes and statistical properties of displacement speckle interferometer signal [Opticheskie shemi I statisticheskie harakteristiki signala spekl-interferometrov peremeshenij], Computer optics [Kompyuternaya optika], tom 33, №3. [In Russian]
- 9. Halama R., Hornacek L., Pecenka L., Krejsa M., Smach J. (2016), 3-D ESPI Measurements Applied to Selected Engineering Problems, Applied Mechanics and Materials, 827, 65–68.
- 10. Joenathan C., Sohmer A., Burkle L. (1995), Increased sensitivity to in-plane displacements in electronic speckle pattern interferometry, Appl. Opt., Vol. 34, No.16, 2880-2885
- 11. Jones R., Wykes C. (1989), Holographic and Speckle Interferometry. 2 edition, Cambridge University Press.
- 12. Komarov Yu.S. (2004), Noise-resistant digital speckle interferometer for vibrometry of objects based on the method of averaging over time [Pomehoustojchivyj cifrovoj spekl-interferometr dlya vibrometrii obektov na osnove metoda usredneniya vo vremeni], Abstract of dissertation for the degree of candidate of technical sciences [Avtoreferat dissertacii na soiskanie uchenoj stepeni k.t.n]. [In Russian]
- 13. Levin A.V. (1953), Working Blades and Disks of Steam Turbines [Rabochije lopatki I diski parovyh turbin], Gosenergoizdat [Gosenergoizdat]. [In Russian]
- 14. Makaeva R.Kh., Tsareva A.M., Karimov A.Kh. (2008), Determination of natural frequencies and forms of vibrations of the disk of constant thickness, fixed in the center // Izv. vuzov. Aviation technique, No 1 - С. 41 - 45.
- 15. Makaeva R.Kh., Tsareva A.M., Karimov A.Kh. (2008), Determination of natural frequencies and vibration modes of a constant thickness centrally secured disk. Russ. Aeronaut. 51, 53–59 (2008).
- 16. Mihaylova E., Naydenova I., Martin S., Toal V. (2004), Electronic speckle pattern shearing interferometer with a photopolymer holographic grating, Appl. Opt., Vol. 43, No. 12, 2439-2442.
- 17. Mihaylova E., Naydenova I., Martin S., Toal V. (2006), Photopolymer diffractive optical elements in electronic speckle pattern shearing interferometry, Opt. Lasers Eng., Vol. 44, No. 9, 965-974.
- 18. Mrozek P., Mrozek E., Werner A. (2018), Electronic speckle pattern interferometry for vibrational analysis of cutting tools, Acta Mechanica et aAutomatica, vol 12, no.2.
- 19. Petrov V., Lau B. (1996), Electronic speckle pattern interferometry with a holographically generated reference wave,” Opt. Eng. Vol. 35, No. 8, 2363-2370.
- 20. Qin J., Gao Z., Wang X., Yang S. (2016), Three-Dimensional Continuous Displacement Measurement with Temporal Speckle Pattern Interferometry, Sensors, (Basel, Switzerland).
- 21. Richardson M.O.W., Zhang Z.Y., Wisheart M., Tyrer J.R. Petzing J. (1998), ESPI non-destructive testing of GRP composite materials containing impact damage, Composites Part A, 29A, 721–729.
- 22. Tkach M. et al. (2021) Improving the Noise Immunity of the Measuring and Computing Coherent-Optical Vibrodiagnostic Complex, In: Nechyporuk M., Pavlikov V., Kritskiy D. (eds) Integrated Computer Technologies in Mechanical Engineering - 2020. ICTM 2020, Lecture Notes in Networks and Systems, vol 188. Springer, Cham.
- 23. Tkach M.R., Zolotiy Yu.G., Dovgan D.V., Guk I.Yu. (2012), Determination of the natural vibration forms of gas turbine engine elements in real time by electron speckle interferometry [Opredelenie form sobstvennih kolebanij elementov GTD v realnom vremeni metodom electronnoj spekl-interferometrii], Aerospace technic and technology [Aviacionno-kosmicheskaya tehnika i tehnologiya] № 8 (95). [In Russian]
- 24. Tkach M.R., Zolotiy Yu.G., Dovgan D.V., Guk I.Yu. (2015), Patent: Method of determining of forms of resonant vibrations shapes of blades of gas turbine engine by speckle interferogram, UA 103068. [In Ukrainian]
- 25. Tkach, M., Morhun, S., Zolotoy, Y., Zhuk, I. (2020), Modal analysis of the axial compressor blade: advanced time-dependent electronic interferometry and finite element method, Int. J. Turbo JetEng.
- 26. Van der Auweraer H., Steinbichler H., Vanlanduit S., Haberstok C., Freymann R., Storer D., Linet V. (2002), Application of stroboscopic and pulsed-laser electronic speckle pattern interferometry (ESPI) to modal analysis problems, Measurements Science and Technology, 13, 451–463.
- 27. Vest. C. M. (1982), Holographic Interferometry, John Wiley and Sons, New York.
- 28. Wailer, M.D., (1961), Chladni Figures: a Study in Symmetry, G. Beil & Sons (London).
- 29. Yang L., Xie X., Zhu L., Wu S., Wang Y. (2014), Review of Electronic Speckle Pattern Interferometry (ESPI) for Three Dimensional Displacement Measurement, Chinese Journal Of Mechanical Engineering, 27(1), 1–13.
- 30. Yelenevsky D.S., Shaposhnikov Yu.N. (2001), Investigation of acoustic emission procession of the structures through electronic speckle interferometry methods [Issledovanie processov zvukoizluchenia konstrukcij metodami elektronnoj spekl-interferometrii], Izvestiya of the Samara Science Centre of the Russian Academy of Sciences [Izvestiya Samarskogo Nauchnogo Centra Rossijskoj Akademii Nauk]. [In Russian]
- 31. Zhuzhukin A.I. (2011), A mobile speckle interferometer for studying vibration modes of vibrating objects outside bench conditions [Mobilnyj spekl-interferometr dlya issledovaniya form kolebanij vibriruyushih obektov vo vne stendovyh usloviyah], Electronic journal «Trudy MAI» [Elektronnyj zhurnal «Trudy MAI»] № 48. [In Russian]
- 32. Zhuzhukin A.I., Solyannikov V.A. (2014), Method of reducing speckle-interferometer sensitivity for the study of turbomachine elements vibration [Metod umensheniya chuvstvitelnosti speklinterferometra pri issledovanii vibratsii detalej turbomashin], Vestnik of Samara University: Aerospace and Mechanical Engineering [Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta] № 1(43). [In Russian]
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57410a3d-d185-4dd9-ab78-fb0388b88c1f