PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Global Stability Analysis of Logistically Grown SIR Model with Loss of Immunity, Inhibitory Effect, Crowding Effect and its Protection Measure

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we have considered an SIR model with logistically grown susceptible in which the rate of incidence is directly affected by the inhibitory factors of both susceptible and infected populations and the protection measure for the infected class. Permanence of the solutions, global stability and bifurcation analysis in the neighborhood of equilibrium points has been investigated here. The Center manifold theory is used to find the direction of bifurcations. Finally numerical simulation is carried out to justify the theoretical findings.
Twórcy
autor
  • Department of Applied Mathematics, University of Calcutta, Kolkata, India
autor
  • Department of Applied Mathematics, University of Calcutta, Kolkata, India
Bibliografia
  • [1] Z. Hu, Z. Teng, L. Zhang, Stability and bifurcation analysis in a discrete SIR epidemic model, Mathematics and computers in Simulation 97, 80–93 (2014).
  • [2] W.M. Liu, S.A. Levin, Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol 23, 187–204 (1986).
  • [3] H.W. Hethcote, M.A. Lewis, P. van den Driessche, An epidemiological model with delay and a nonlinear incidence rate, J. Math. Biol. 27, 49–64, (1989).
  • [4] D. Xiao, S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci. 208, 419–429 (2007).
  • [5] H.N. Agiza, E.M. Elabbasy, EL-Metwally, A.A. Elsadany, Chaotic dynamics of a discrete prey-predator model with Holling type-II, Non-linear Annal. Real World Appl. 10, 116–129 (2009).
  • [6] W.O. Kermack, A.G. McKendrick, Contribution to mathematical theory of epidemics, P. Roy. Soc. Lond. A Mat. 115,700–721 (1927).
  • [7] N.T.J. Bailey, The Mathematical Theory of Infectious Diseases, Griffin, London, 1975.
  • [8] J.D. Murray, Mathematical Biology, Springer, New York, 1993.
  • [9] Z. Ma, J. Li (eds.), Dynamical Modeling and Analysis of Epidemics, World Scientific, 2009.
  • [10] R.M. Anderson, R.M. May, Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, 1998.
  • [11] F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, 2001.
  • [12] M.Y. Li, L. Wang, Global stability in some SEIR epidemic models, IMA Volumes in Mathematics and its Application, Spring-Verlag 126, 295–311 (2002).
  • [13] Q. Zou, S. Gao, Q. Zhong, pulse vaccination strategy in an epidemic model with time delay and nonlinear, Advanced Studies in Biology 7(1), 307–321 (2009).
  • [14] T. Zhang, Z. Teng, Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence, Chaos Soliton and Fractals 37, 1450–1468 (2008).
  • [15] L. Zhou, M. Fan, Dynamics of an SIR epidemic model with limited medical resources revisited, Nonlinear Anal RWA 13, 312–324 (2012).
  • [16] F. Brauer, P. van den Driessche, Models for transmission of disease with immigration of infectives, Math Biosci 171(2), 143–154 (2001).
  • [17] U. Ghosh, S. Sarkar, D.K. Khan, Modelling of infectious disease in Presence of Vaccination and Delay, International Journal of Epidemiology and Infection 2(3), 50–57 (2014).
  • [18] Y. Xue, T. Li, Stability and Hopf Bifurcation for a Delayed SIR Epidemic Model with Logistic Growth, Hindawi Publishing Corporation 1–11 (2013).
  • [19] Y. Enatsu, E. Messina, Y. Muroya, Y. Nakata, E. Russo, A. Vecchio, Stability analysis of delayed SIR epidemic model with a class of nonlinear incidence rates, Applied Mathematics and Computation 218, 5327–5336 (2012).
  • [20] R. Ghosh, U. Ghosh, Bifurcation analysis of SIR Model with Logistically Grown Susceptibles and Effect of Loss of Immunity of the Recovered Class, Proceeding: International seminar: Recent trends in Mathematics, Calcutta University, Applied Mathematics, Springer Proceedings 227–235 (2015).
  • [21] A. Kaddar, Stability analysis of delayed SIR epidemic model with saturated incidence rate, Nonlinear Analysis 3, 299–306 (2010).
  • [22] A. Karobeinikov, P.K. Maini, Nonlinear incidence and stability of infectious disease models, Math. Med. Bil. 22, 113–128 (2005).
  • [23] B. Dubey, A. Parta, P.K. Srivastava, U.S. Dubey, Modeling
  • and analysis of an SEIR model with different type of nonlinear treatment rates, Journal of Biological System 2(3), 1–25 (2013).
  • [24] B. Dubey, P. Dubey, U.S. Dubey, Dynamics of an SIR epidemic model with non-linear incidence rate and treatment rate, Applications and Applied Mathematics 10(2), 718–737 (2015).
  • [25] T.K. Kar, P.K. Mondal, Global dynamics and bifurcation in delayed SIR epidemic model, Nonlinear Analysis: Real World Applications 55, 710–722 (2011).
  • [26] M. Agarwal, V. Verma, Modeling and Analysis of the Spread of an Infectious Disease Cholera with Environmental Fluctuations, Applications and Applied Mathematics 7(1), 406–425 (2012)
  • [27] P.K. Mondal, T.K. Kar, Global Dynamics of a Water-Borne Disease Model with Multiple Transmission Pathways, Applications and Applied Mathematics 8(1), 99–115 (2013).
  • [28] C. Wei, L. Chen, A Delayed Epidemic Model with Pulse Vaccination, Discrete Dynamics in Nature and Society (2008).
  • [29] J.Z. Zhang, Z. Jin, Q.X. Liu, Z.Y. Zhang, Analysis of a Delayed SIR Model with Nonlinear Incidence Rate, Discrete Dynamics in Nature and Society, (2008).
  • [30] M. N’zi, G. Kanga, Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model with saturated incidence rate, Random Oper. Stoch. Equ 24, 1–21. (2016).
  • [31] J. R.Beddington, Mutual Interference Between Parasites or Predators and its Effect on Searching Efficiency, Journal of Animal Ecology 44, 331–340 (1975).
  • [32] D.L.DeAngelis, R.A Goldstein, R.V. O’Neill, A Model for Tropic Interaction, Ecology 56, 881–892 (1975).
  • [33] A.M. Elaiw, S.A. Azoz, Global Properties of a Class of HIV Infection Models with Beddington–DeAngelis Functional Response, Mathematical Methods in the Applied Science 36, 383–394 (2013).
  • [34] G.Huang, W. Ma, Y. Takeuchi, Global Analysis for Delay Virus Dynamics Model with Beddington–DeAngelis Functional response, Applied Mathematics Letters 24, 1199–1203 (2011).
  • [35] P. Feng, Analysis of delayed predator-prey model with ratio dependent functional responce and quadratic harvesting, Journal of Applied Mathematics and Computing 44(1), 251–262 (2014).
  • [36] J. Hale, Theory of Functional Differential Equations, Springer-Verlag, Heidelberg, 1977.
  • [37] S. Guo, J. Wu, Bifurcation theory of functional differential equations, Springer, 2013.
  • [38] P. Van den Driessche, J. Watmough, Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission, Mathematical Biosciences 180, 29–48 (2002).
  • [39] L. Perko, Differential Equations and Dynamical Systems, Springer, New York, 2000.
  • [40] S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Springer, New York, 2003.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-573f60ad-3dd5-4a15-a9fd-1b8dedae6380
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.