PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predicting the stability of open stopes using Machine Learning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Mathews stability graph method was presented for the first time in 1980. This method was developed to assess the stability of open stopes in different underground conditions, and it has an impact on evaluating the safety of underground excavations. With the development of technology and growing experience in applying computer sciences in various research disciplines, mining engineering could significantly benefit by using Machine Learning. Applying those ML algorithms to predict the stability of open stopes in underground excavations is a new approach that could replace the original graph method and should be investigated. In this research, a Potvin database that consisted of 176 historical case studies was passed to the two most popular Machine Learning algorithms: Logistic Regression and Random Forest, to compare their predicting capabilities. The results obtained showed that those algorithms can indicate the stability of underground openings, especially Random Forest, which, in examined data, performed slightly better than Logistic Regression.
Rocznik
Strony
241--248
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • University of Alberta, School of Mining and Petroleum Engineering, Edmonton, Alberta T6G 2R3, Canada
  • University of Alberta, School of Mining and Petroleum Engineering, Edmonton, Alberta T6G 2R3, Canada
Bibliografia
  • [1] Potvin Y. Empirical open stope design in Canada. 1988. Available from: https://doi.org/10.14288/1.0081130.
  • [2] McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 1943 Dec;5(4):115-33.
  • [3] Rosenblatt F. The perceptron, a perceiving and recognizing automaton project para. Cornell Aeronautical Laboratory; 1957. book.
  • [4] Carbonell JG, Michalski RS, Mitchell TM. Machine learning: a historical and methodological analysis. AI Mag 1983 Sep 15; 4(3). 69-69.
  • [5] Pu Y, Szmigiel A, Apel DB. Purities prediction in a manufacturing froth flotation plant: the deep learning techniques. Neural Comput Appl 2020 Sep;32(17):13639-49.
  • [6] Pu Y, Apel DB, Wang C, Wilson B. Evaluation of burst liability in kimberlite using support vector machine. Acta Geophys 2018 Oct;66(5):973-82.
  • [7] Pu Y, Apel DB, Szmigiel A, Chen J. Image recognition of coal and coal gangue using a convolutional neural network and transfer learning. Energies 2019 May 8;12(9):1735.
  • [8] Qi C, Fourie A, Du X, Tang X. Prediction of open stope hangingwall stability using random forests. Nat Hazards 2018 Jun;92(2):1179-97.
  • [9] Santos AEM, Amaral TKM, Mendonça GA, Silva D de FS da. Open stope stability assessment through artificial intelligence. REM - Int Eng J. 2020 Sep;73(3):395-401.
  • [10] Capes GW. Open stope hangingwall design based on general and detailed data collection in unfavourable hangingwall conditions. 2009 [cited 2022 Feb 9]; Available from: https://harvest.usask.ca/handle/10388/etd-04072009-143339.
  • [11] Mathews KE, Hoek DC, Wyllie, Stewart SBV. Prediction of stable excavation spans for mining at depths below 1000 metres in hard rock. 1981. Ottawa, ON.
  • [12] Barton N, Lien R, Lunde J. Engineering classification of rock masses for the design of tunnel support. Rock Mech Felsmech Mec Roches 1974 Dec;6(4):189-236.
  • [13] Deere DU. Technical description of rock cores for engineering purpose. Rock Mech Eng Geol 1963;1:16-22.
  • [14] Hoek E, Brown ET. Underground excavations in rock. Rev. London: Institution of Mining and Metallurgy; 1980. p. 527.
  • [15] Marcot BG, Hanea AM. What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis? Comput Stat 2021 Sep;36(3):2009-31.
  • [16] Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th international joint conference on Artificial intelligence - volume 2. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.; 1995. p. 1137-43 (IJCAI'95).
  • [17] Visa S, Ramsay B, Ralescu A, Knaap EVD. Confusion matrix-based feature selection. Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.666.8961.
  • [18] Bradley AP. The use of the Area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 1997 Jul;30(7):1145-59.
  • [19] Janitza S, Strobl C, Boulesteix AL. An AUC-based permutation variable importance measure for random forests. BMC Bioinf 2013 Dec;14(1):119.
  • [20] Hosmer DW, Lemeshow S, Sturdivant RX. Applied logistic regression. 3rd ed. Hoboken, New Jersey: Wiley; 2013. p. 1 (Wiley series in probability and statistics).
  • [21] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res 2011;12(85):2825-30.
  • [22] Breiman L. Random forests. Mach Learn 2001;45(1):5-32.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-573bd308-a2d6-49d1-b38d-b0f992ef331a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.