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Predicting the stability of open stopes using Machine Learning

Abstract

The Mathews stability graph method was presented for the first time in 1980. This method was developed
to assess the stability of open stopes in different underground conditions, and it has an impact on
evaluating the safety of underground excavations. With the development of technology and growing
experience in applying computer sciences in various research disciplines, mining engineering could
significantly benefit by using Machine Learning. Applying those ML algorithms to predict the stability of
open stopes in underground excavations is a new approach that could replace the original graph method
and should be investigated. In this research, a Potvin database that consisted of 176 historical case
studies was passed to the two most popular Machine Learning algorithms: Logistic Regression and
Random Forest, to compare their predicting capabilities. The results obtained showed that those
algorithms can indicate the stability of underground openings, especially Random Forest, which, in
examined data, performed slightly better than Logistic Regression.
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Predicting the Stability of Open Stopes Using

Machine Learning

Alicja Szmigiel*, Derek B. Apel**

University of Alberta, School of Mining and Petroleum Engineering, Edmonton, Alberta, T6G 2R3, Canada

Abstract

The Mathews stability graph method was presented for the first time in 1980. This method was developed to assess the
stability of open stopes in different underground conditions, and it has an impact on evaluating the safety of underground
excavations. With the development of technology and growing experience in applying computer sciences in various research
disciplines, mining engineering could significantly benefit by using Machine Learning. Applying those ML algorithms to
predict the stability of open stopes in underground excavations is a new approach that could replace the original graph
method and should be investigated. In this research, a Potvin database that consisted of 176 historical case studies was
passed to the two most popular Machine Learning algorithms: Logistic Regression and Random Forest, to compare their
predicting capabilities. The results obtained showed that those algorithms can indicate the stability of underground
openings, especially Random Forest, which, in examined data, performed slightly better than Logistic Regression.

Keywords: open stope, machine learning, logistic regression, random forest

1. Introduction

he stability of underground excavations in

open stope methods is one of the mining
industry's major concerns. Three essential aspects
need to be considered while designing open stopes.
The first one concerns the properties of the rock
mass and its mineral components that directly
impact the behaviour of the surrounding rocks. The
second aspect is how stress fields are impacting the
rock mass. Those stresses might develop zones of
relaxation or increased compressive stresses in stope
walls. The last aspect is the underground openings'
geometry, size and orientation. Those three crucial
features interact together and directly impact the
complexity of underground stopes design [1].

The effectiveness of open stope mining methods
depends on safety and high productivity. Usage of
very large and non-entry excavations and mecha-
nized mining equipment is necessary. However, the
development of each stope is associated with large
investment costs, which is the main reason for in-
dustries to reduce the number of stopes by

increasing their dimensions. The significant diffi-
culty facing that approach is that the consequences
may be catastrophic when stopes are exceeded to
their maximum dimensions. Another challenge for
industries is that dilution in rock mass needs to be
considered when designing open stopes. In addi-
tion, the dimensions need to be specifically adjusted
to geotechnical conditions.

Original stability graphs developed by Matthews
were based only on 50 history cases. That number was
later extended to 176 cases by Potvin. In addition,
Matthews's graph took three distinct separated by
transition zones: stable, unstable and caved, Potvin
modified that, and the number of zones was reduced
to stable and caved, separated by transition [1].

The beginnings of the Artificial Intelligence and
Machine Learning concepts date back to the mid-
20th century. In 1943 the first mathematical model of
a neural network was presented by Warren
McCulloch and Walter Pitts, where the concepts of
the neurophysiology of brain cells and calculus were
combined [2]. This research was a foundation that
triggered the interest of scientists in further
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investigation. The first Artificial Intelligence model
in the modern sense has its origin in the research
presented by psychologist Frank Rosenblatt. He
created a machine to recognize letters which
became a prototype of an Artificial Neural Network
known today [3]. Although, in the beginning, Ma-
chine Learning was used as a training program for
Artificial Intelligence, in the late 1970s, research
focused on using knowledge-based and logical
methods, which caused the separation of Al and ML
[4]. From that point, computer programs, and more
precisely Machine Learning, started to be more
present, expanded and applied in various tasks.

Using Machine Learning might be considered
a new approach to determine the stability of open
stopes. In previous research, ML models presented
promising effectiveness in various research disci-
plines in mining engineering. For example, those
algorithms were applied in mineral processing to
predict the outcome values recovered from various
beneficiation processes, such as flotation [5]. In
addition, the classification algorithms have been
successfully applied in areas of mining engineering
such as rockburst liability prediction [6] or for and
image recognition of coal [7].

Researchers have approached the problem of
open stopes stability assessment with computing
sciences methods. Most popular include numerical
modelling, presented by Vallejos and Diaz (2020) [5],
which applies a new criterion for numerical
modelling to evaluate a hangingwall overbreak.

Some of the Machine Learning and Artificial In-
telligence models were employed to predict the
stability of open stopes, such as Random Forest [8]
and Artificial Neural Network [9]. Both of those
studies presented promising capabilities of those
models. However, a smaller database was investi-
gated (115 and 35 examples, respectively). Extending
that databases could have a crucial impact on pre-
dicting the capabilities of those models.

The Potvin database was passed to two ML algo-
rithms in this research — Logistic Regression and
Random Forest. Both showed satisfying predicting
capability, with an average accuracy of 0.68 for LR
and 0.71 for RF. However, the latter performed
better, especially with predicting unstable zone,
which was the most challenging for both algorithms
to predict because of similar values to other classes.

2. Open stope mining method

An open stope mining method extracts an enor-
mous block of material using the drill or blast
method. Then, tunnels are mined underground to
access that orebody. After the material is removed

by heavy machinery, the open void or stope is
created. Later, it's usually backfilled, which allows
for the extraction of adjacent deposits by opening
new stopes. The walls of rock mass surrounding the
stopes are called hanging walls (HW), and their
properties vary depending on the geology and
mining constraints. The appearance of a hanging
wall causes the stope to be less stable [10].

2.1. Matthew stability graph method review

The Mathews stability graph design method was
established explicitly for deep underground mining
excavations open stope surfaces. It was developed
and presented for the first time in 1981.

This widely used method relates two calculated
factors: shape factor (S) or hydraulic radius (HR)
and stability number (N). The primary principle
theory behind the Mathews stability graph is that
the dimensions of an excavation surface can be
associated with the rock mass conditions and indi-
cate either instability or stability of the opening [11].

Stability Number N is explicitly developed for
designing span dimensions and support, and it
yields the physical conditions of the stopes. To
calculate Stability Number specific rating systems
are being applied. N is defined as follows:

N=Q'+4-B-C, (1)

where:

Q' — Modified Q value.

A — Rock stress factor.

B — Joint orientation adjustment factor.

C — Surface orientation factor.

Q value was first presented in 1974 by Barton et al.
of the Norwegian Geotechnical Institute (NGI) to
evaluate rock mass characteristics and ground con-
dition [12]. The purpose of calculating the Q value
was to determine the support required in mining
excavations, tunnels and rock caverns. The formula
is as follows:

_RQD Jr
=T T (2)

The first quotient (RIQTD) represents the structure

Q/

of the rock mass, and the latter one (%) represents

the roughness and frictional properties of the joint
wall or filling material.

Rock Quality Designation (RQD) is a system
developed by Deere [13]. It is widely used as
a factor in classification systems and as a primary
parameter for tunnel support selection. It quantifies
the competence of a drill core, and it is defined as
a ratio between the total lengths of entire pieces
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(larger than 10 cm) and the total length of a core.
The values of Jn, Jr, and Ja are determined using
NGI Classification Charts presented in Hoek and
Brown [14].

Values of A, B and C factors are determined by
graphs developed by Matthews and can be found in
Matthews et al. [11] and Potvin [1]. Factor A factor is
a function represented by a ratio of the intact rock
strength, determined by the Uniaxial Compressive
Strength (USC) test, and the induced stress,
maximum tangential stress acting parallel to the
exposed surface at the boundary of a stope. Factor B
accounts for the orientation of the geological struc-
tures (joint sets) concerning the investigated plane.
It is determined by the angle of intersection be-
tween the exposed surface and the most predomi-
nant structure. Finally, factor C stands for surface
inclination, assuming that stopes backs are naturally
less stable than walls. The reason for that is the
impact of gravity.

2.2. Database

Potvin's database was collected from 34 mines
using the open-stoping method between 1986 and
1987. The provided data includes the characteristics
of the rock mass and the physical and stress con-
ditions. In some situations, circumstances did not
allow to estimate all the necessary conditions
confidently caused by lack of access to the site or
missing background information. Consequently, the
entire database was divided into the main database
that contained accurate and complementary data
that was less accurate. The main data consisted of 84
cases, and the remaining 92 cases were comple-
mentary data created using the same parameters
and principles as the main data. Potvin's database
consists of several parameters regarding each open
stope investigated. These parameters include: block
size factor (RQD/]n), stress conditions, the difference
in the dip between the designed stope surface and
the critical joint, the relative difference in the strike,
the indication of anisotropy of the rock mass, the
shear strength of the critical joint (Jr/Ja) and effect
of the gravity. These features were used to
calculate the input parameters necessary for the
analysis — stability number and hydraulic radius
(shape factor) [1].

The distribution of the data is shown in Fig. 1. The
green dots are examples of stable cases, the blue
ones unstable, and the red ones caved. Table 1
shows the first examples of the database.
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Fig. 1. Distribution of the data.

3. Model development, evaluation and results

The two most popular Machine Learning algo-
rithms were investigated in this research and
applied to Potvin's database. In order to achieve the
most satisfying performance of the model, a few
evaluation methods were applied to maximize the
efficiency and obtain the highest accuracy. These
methods were also beneficial for eliminating the
risk of overfitting, a common problem for ML al-
gorithms applied for data with few training
examples.

3.1. K-fold cross-validation

The k-fold Cross Validation is sometimes called
also rotation estimation. It is a powerful tool to
measure the success rate of our models used for
classification [15]. The dataset is randomly split into
a chosen number (k) of mutually exclusive sets (the
folds) approximately equal in size. The main
advantage of using CV is that each observation can
be tested, which means that in every run, the testing
set consists of different cases from the provided data
set. In k-fold CV, we iterate over our data set
k-times. In every round, our data is split into k sets,
one part is being used for validation, and the
remaining k—1 sets are merged into a training set
[16]. Fig. 2 presents the process of cross-validation
where k = 5. That approach results in 5 different
models fitted on partially overlapping training sets
and tested on a non-overlapping validation fold. For
every run, accuracy is established, and then the
model performance is calculated as the arithmetic
mean of all the accuracies.
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Table 1. Database from Potvin 1988, first examples.

BLOCK  STRESS

JOINT ORIENTATION  EFFECT OF

SIZE FACTOR FACTOR GRAVITY (C)
RQD/Jn  (A) CRITICAL JOINT (B) Jrlja SLIDING  FREEFALL/ HYD. N ASSES.
SLABBING RADIUS
1 18 1 0.64 3 6.5 - 5 228  STABLE
2 6 0.2 0.25 1 25 - 8.9 0.7 UNSTABLE
3 6 0.1 0.2 1 25 - 7.7 0.3 CAVE
4 7 1 0.2 1.5 - 3.7 7.1 7.8 UNSTABLE
5 40 1 1 1 — 8 14 320 STABLE
6 40 1 1 1 - 8 11 320 STABLE
7 40 1 1 1 — 6.5 52 260 STABLE
8 6 1 0.4 1.5 5 - 8.5 18 STABLE
10 4 0.3 0.2 0.8 3.5 - 4.7 0.7 UNSTABLE
12 7 1 0.2 0.6 - 6.5 9.1 5.5 UNSTABLE
13 15 1 0.2 2 — 7 8.3 42 STABLE
16 25 0.1 0.85 0.25 - 2 5.8 1.1 CAVE
17 25 0.1 0.85 0.25 - 2 4.2 1.1 STABLE
18 30 1 0.6 1 - 8 8.8 144 STABLE

Validation

set Training set

Fig. 2. The process of k-fold Cross-Validation.

5
1N\
> accuracy = o > accuracy,

=1

k iterations (folds)

3.2. Confusion matrix and ROC AUC score

A Confusion Matrix is one of the methods to
evaluate the model's performance. It is a valuable
tool to visualize how our model classifies the testing
set. A Confusion Matrix is a size n x n where the
predicted class and actual class are compared [17].
Table 2 shows a Confusion Matrix where n = 2 and
entries have the meaning as follows:

TN — True Negative, the number of correct
negative predictions.

TP — True Positive, the number of correct positive
predictions.

FN — False Negative, the number of incorrect
negative predictions.

FP — False Positive, the number of incorrect pos-
itive predictions.

Based on the confusion matrix, important metrics
can be derived that are useful to evaluate the
model's performance. The Recall (Sensitivity/True
Positive Rate) shows the proportion of the positive
class that was correctly classified. False Negative

Rate (FNR) is the proportion of the positive class that
the model classified incorrectly. Specificity (True
Negative Rate) indicated the proportion of correctly
classified negative class and False Positive Rate
(FPR), which shows the proportion of incorrectly
classified negative class.

Recall= —TPZPFN , (3)
FNR:TPIZ—NFN’ @
Specificity = % , (5)
FPR:TNFJI:PP’ ©)

The ROC (Receiver Operator Characteristic)
curve is a probability measurement tool that plots
TPR vs FPR. AUC (Area Under the Curve) is
a measure of the model's performance for classifi-
cation problems, it shows the capability of the
model to distinguish differences between classes,
and it is defined as the summary of the ROC curve
[18]. The higher the AUC score, the better the per-
formance. An excellent model should have AUC
close to 1, indicating satisfying separability [19].
According to Hosmer ]JR et al. [20], a model with an
outstanding performance would achieve an AUC
score above 0.9. Values between 0.8 and 0.9 would

Table 2. The Confusion Matrix.

Predicted Negative Predicted Positive

Actual Negative N FP
Actual Positive EN TP
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be considered excellent, and 0.7—0.8 indicate
acceptable classification.

3.3. Logistic regression

Logistic Regression is one of the most popular
machine learning algorithms used for classification
problems. It is a predictive algorithm based on the
concept of probability, which uses a cost function
defined as the Sigmoid function.

3.3.1. Development of the model

As the input parameters to the logistic regression
algorithm, the stability number (N) and shape factor
(HR) were used. In this case, a multiclass classifica-
tion problem was considered. The model predicted
if the stope would be classified as Stable, Unstable,
or Caved based on input parameters.

The data were randomly split into training and test
sets, 80 and 20%, respectively. After that, a built-in
sklearn library Standard Scaler was used to scale our
data, so the distribution has a mean equal to 0 and
a standard deviation equal to 1. The purpose of that s
to standardize our futures in cases when some of
them have a larger magnitude and might dominate
the estimation function, causing it to be unable to
learn the features as correctly as we would expect [21].

3.3.2. Results

The Logistic Regression algorithm from the
sklearn library was fitted to our model. Fig. 3 shows
the decision boundary fitted to our data separating
the unstable, stable and caved zone. It is noticeable
that the model had the most problems with plotting
decision boundaries for unstable cases. This is
because these cases have similar values to either
stable or caved ones and are hard to separate.

A confusion matrix was plotted to evaluate our
model more carefully (Fig. 4). Stable cases were

1034

1024

101 4

Stabilty Number N

1004

0 5 10 15 20 25
Hydraulic Radius

Fig. 3. Decision boundaries for logistic regression.

Tue label

0 1 2
Predicted label

Fig. 4. Confusion matrix for logistic regression.

mapped as 0, unstable as 1 and Cave as 2. We can
see that Logistic Regression did a very satisfying
prediction performance for stable and caved cases.
Unfortunately, it did not perform well for unstable
zones, which supports the results obtained by
plotting decision boundaries.

The Area under the ROC Curve was also calculated
for the training and testing set. The obtained values
were 0.81 and 0.78, respectively, which according to
Hosmer JR et al. [20], would be considered excellent
for the training set and acceptable for the test set.

Cross-Validation was performed to determine the
average accuracy of our model. The number of folds
for our data was set to be equal to 5, which means five
different accuracies were calculated for five different
validation sets. The number of folds is determined by
the size and characteristics of the datasets. It needed
to be ensured that the training set and validation set
are taken from the same distribution and that both
sets include acceptable variation. For our dataset, the
number of folds equal to 5 is sufficient, and it means
that in every run the model was validated on 20% of
the data [15]. The accuracies for our data were: 0.68,
0.64, 0.71, 0.71, 0.64. The average is 0.68, with a stan-
dard deviation of 0.03.

3.4. Random forest

A Random Forest is a powerful meta-estimator
that can be applied to solve classification problems.
The RF algorithm was presented by Breiman [22]
and has been successfully applied in many fields by
researchers. The RF algorithm consists of a group of
decision trees operating as a committee. The output
is the value predicted by a larger number of decision
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Input data
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} Majority voting |
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Fig. 5. The architecture of Random Forest algorithm. Modified from [8].

trees. An example of Random Forest architecture is
shown in Fig. 5. The n represents the number of
estimators (decision trees) that create the RF, and k1,
k2, ..., kn are the results obtained by each decision
tree [8].

The Random Forest algorithm allows us to regu-
late some of the parameters that directly impact the
model's performance and are helping to control the
overfitting or underfitting of the model. For
example, we can change one of the parameters to
control the algorithm's performance in several de-
cision trees. The higher the number of decision
trees, the better the chance for the model to prop-
erly learn the data. However, including too many
estimators may slow down the process and increase
the risk of overfitting.

Another parameter that helps to improve our
model is the maximum depth of each tree in the
forest. Developing deeper trees means that each tree
would have more splits to better capture informa-
tion about the data. However, if the decision trees
are too deep for provided data, it might cause the
same problems as too many estimators, slow pro-
cessing time and overfitting of the data.

3.4.1. Development of the model

Potvin's database was passed to the Random
Forest algorithm using the sklearn library in Python
language. The input parameters were stability
number (N) and shape factor — hydraulic radius
(HR). The output was the range of stabilities labelled
to each stope — either stable, unstable or caved. The
data was separated into training sets — used to train
the data, and the test set — used to test the algo-
rithm's performance. The size of the test set was
equal to 36 examples, representing 20% of the whole
data set.

3.4.2. Hyper-parameters tuning

In order to achieve the best performance of the RF
model, the optimum number of estimators and the
depth of each tree need to be established. These
Hyper-parameters are necessary because the
different values have special predictive perfor-
mances. The AUC (Area Under the ROC Curve)
score was used as the evaluation metric to find the
optimum values. For our multiclass classification
problem, the value of the AUC score was calculated
using the One-vs-Rest scheme, and the macro
average was reported.

AUC score was calculated for several estimators to
find the most favourable number of decision trees
for our data. Fig. 6 shows the AUC score vs the
number of estimators for the training and test sets.
We can notice that the model achieves the best
performance for the number of estimators, around
15. The performance decreases for more decision
trees, and our model overfits the training data. The
number of estimators was set to 15.

The same method was used to choose the opti-
mum depth of each decision tree. The AUC score vs
max depth was plotted for several values. On Fig. 7,

100 A

AUC score

= Train AUC
— Test AUC

0 25 50 L] 100 125 150 175 200
n_estimators

Fig. 6. The AUC score for several numbers of decision trees.

100 A

0.98 A

0.96

0.94 1

AUC score
(=}
0
~N

0.90
0.88
0.86 = Train AUC
— Test AUC
0 5 10 15 20 P 30

max_depth

Fig. 7. The AUC score for different values of decision trees depth.
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Fig. 8. Confusion Matrix for Random Forest multiclass classification.

we can see that the model's performance decreases
for depths higher than 4. We can also see that it
overfits for large depth values. It predicts training
data perfectly. However, it fails to generalize the
findings for the test set. For our data, the tree depth
was set to 4.

3.4.3. Results

Random forest showed a favourable classification
capability on Potvin's database. After choosing the
number of decision trees and the depth of each tree,
the model predicted the stability of stopes with
satisfying accuracy. At first, the data were randomly
separated into training and testing sets. The accu-
racy for training data was 0.84, and for the test set,
0.75. The Confusion Matrix (Fig. 8) was plotted to
illustrate the model's performance. The label Stable
was mapped as 0, Unstable as 1 and Cave as 2. It is
noticeable that the model primarily has the most
difficulties assigning the Unstable class. As shown
in Fig. 3, the plot of the distribution of our data,
Stability Number vs Hydraulic Radius, the examples
marked as Unstable are challenging to distinguish,
and it's challenging for Machine Learning models to
assign that class correctly similar values to either
stable or Cave condition. The model shows the best
performance for the Stable class; 17 out of 19 cases
were predicted correctly.

In the next step, Cross-Validation was performed.
The number of folds was chosen to be 5, and the
obtained output was five accuracy values for five
different training and validating sets. The values for
each set were: 0.61, 0.75, 0.71, 0.78, 0.68. The average
accuracy equals 0.71 with the standard deviation of
+/-0.06.

Then the Area Under the ROC Curve score for 15
decision trees with depth equal to 4 was calculated.
For training data, the AUC score was 0.96 and 0.83
for test data. According to Hosmer JR et al. [20], that
score can be considered excellent for the test set and
outstanding for the training set.

4. Summary and conclusions

The two most popular Machine Learning algo-
rithms, Logistic Regression and Random Forest, were
presented in this research to predict open stopes’
stability. The total number of 176 history cases
investigated was collected from Potvin [1]. Two vari-
ables from the data were selected, Stability Number
(N) and the shape factor (HR), all of them with con-
dition (label) assigned: stable, unstable or Cave.

Both models were evaluated using k-fold Cross-
Validation, Confusion Matrix and ROC — AUC
score to obtain the most satisfying results. Random
Forest performed slightly better than Logistic
Regression, mainly predicting the unstable class.
The reason for that is that an unstable class has
values of N and HR similar to other classes, and it is’
hard to separate them with a line.

In Radom Forest, hyper-parameter turning was
performed to develop our model and achieve the
best performance. First, the Area under the ROC
curve was calculated for several estimators (decision
trees) and different values of tree depth. Then the
AUC vs number of estimators/tree depth were
plotted to find the most optimum values for our
model.

Confusion Matrix was plotted for both algorithms.
It helped conclude that the model has the most
difficulties predicting unstable classes. All three
classes were investigated in the original Matthew
stability graph method, but Potvin later reduced the
number of classes to stable and Cave separated by
a transition zone. That approach might be good for
future investigation to increase the model's accuracy
and achieve better performance since the unstable
class is most difficult for ML models to predict.

In general, both algorithms showed satisfying
capabilities and could be used in further investiga-
tion and have great potential in predicting the sta-
bilities of open stopes. In future research, the data
could be expanded to more historical cases to obtain
even better results, as well as other ML or Al algo-
rithms might be investigated.
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