PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of lower limb movements on iliac vein stenting in iliac vein compression syndrome patients: insights from computational modeling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Iliac vein stenting is the primary treatment for patients with iliac vein compression syndrome (IVCS). However, post-stent placement, patients often experience in-stent restenosis and thrombosis. Despite this, the role of lower limb movements in the functioning of stents and veins in IVCS patients remains unclear. This study aimed to address this knowledge gap by developing a computational model using medical imaging techniques to simulate IVCS after stent placement. Methods: This research used a patient-specific model to analyze the effects of lower extremity exercises on hemodynamics post-stent placement. We conducted a comprehensive analysis to evaluate the impact of specific lower limb movements, including hip flexion, ankle movement and pneumatic compression on the hemodynamic characteristics within the treated vein. The analysis assessed parameters such as wall shear stress (WSS), oscillatory shear index (OSI), and residence time (RRT). Results: The results demonstrated that hip flexion significantly disrupts blood flow dynamics at the iliac vein bifurcation after stenting. Bilateral and left hip flexion were associated with pronounced regions of low WSS and high OSI at the iliac-vena junction and the stent segment. Additionally, active ankle exercise (AAE) and intermittent pump compression (IPC) therapy were found to enhance the occurrence of low WSS regions along the venous wall, potentially reducing the risk of thrombosis poststent placement. Consequently, both active joint movements (hip and ankle) and passive movements have the potential to influence the local blood flow environment within the iliac vein after stenting. Conclusions: The exploration of the impact of lower limb movements on hemodynamics provides valuable insights for mitigating adverse effects associated with lower limb movements post iliac-stenting. Bilateral and left hip flexions negatively impacted blood flow, increasing thrombosis risk. However, active ankle exercise and intermittent pump compression therapies effectively improve the patency.
Rocznik
Strony
23--35
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechanical Engineering, Jiangsu University of Technology, China.
autor
  • School of Mechanical Engineering, Jiangsu University of Technology, China.
autor
  • School of Mechanical Engineering, Jiangsu University of Technology, China.
autor
  • Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, China.
autor
  • Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Center of Vascular Surger, China.
autor
  • Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Center of Vascular Surger, China.
Bibliografia
  • [1] AI L., VAFAI K., A coupling model for macromolecule transport in a stenosed arterial wall, Int. J. Heat Mass Transfer, 2006, 49 (9–10), 15681591, http://doi.org/10.1016/j.ijheatmasstransfer.2005.10.041
  • [2] CHEN A., FRANGOS S., KILARU S., SUMPIO B., Intermittent pneumatic compression devices–physiological mechanisms of action, Eur. J. Vasc. EndocascN., 2001, 21 (5), 383–392, http://doi.org/10.1053/ejvs.2001.1348
  • [3] CHENG C.P., DUA A., SUH G.-Y., SHAH R.P., BLACK S.A., The biomechanical impact of hip movement on iliofemoral venous anatomy and stenting for deep venous thrombosis, J. Vasc. urg-Venous L., 2020, 8 (6), 953–960, http://doi.org/10.1016/j.jvsv.2020.01.022
  • [4] COCKETT F., THOMAS M.L., The iliac compression syndrome, Brit. J. Surg., 1965, 52 (10), 816–821, http://doi.org/10.1002/bjs.1800521028
  • [5] FERRARINI A., FINOTELLO A., SALSANO G., AURICCHIO F., PALOMBO D., SPINELLA G. et al., Impact of leg bending in the patient-specific computational fluid dynamics of popliteal stenting, Acta Mech. Sin., 2021, 37, 279–291, http://doi.org/10.1007/s10409-021-01066-2.
  • [6] GÖKGÖL C., UEKI Y., ABLER D., DIEHM N., ENGELBERGER R.P., OTSUKA T. et al., Towards a better understanding of the posttreatment hemodynamic behaviors in femoropopliteal arteries through personalized computational models based on OCT images, Sci. Rep., 2021, 11 (1), 16633, http://doi.org/10.1038/s41598-021-96030-2
  • [7] JEON U.B., CHUNG J.W., JAE H.J., KIM H.-C., KIM S.J., HA J. et al., May-Thurner syndrome complicated by acute iliofemoral vein thrombosis: helical CT venography for evaluation of long-term stent patency and changes in the iliac vein, Am. J. Roentgenol., 2010, 195 (3), 751–757, http://doi.org/10.2214/AJR.09.2793
  • [8] KOSKINAS K.C., CHATZIZISIS Y.S., ANTONIADIS A.P., GIANNOGLOU G.D., Role of endothelial shear stress in stent restenosis and thrombosis: pathophysiologic mechanisms and implications for clinical translation, J. Am. Coll. Cardiol., 2012, 59 (15), 1337–1349, http://doi.org/10.1016/j.jacc.2011.10.903
  • [9] KU D.N., GIDDENS D.P., ZARINS C.K., GLAGOV S., Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress, Arterioscler. Thromb. Vasc. Biol., 1985, 5 (3), 293–302, http://doi.org/10.1161/01.ATV.5.3.293
  • [12] LAGACHE M., COPPEL R., FINET G., DERIMAY F., PETTIGREW R.I., OHAYON J. et al., Impact of malapposed and overlapping stents on hemodynamics: a 2D parametric computational fluid dynamics study, Mathematics-Basel, 2021, 9 (1), 795, http://doi.org/org/10.3390/math9080795
  • [13] LI C., FENG H., WANG X., WANG Y., The influencing mechanism of iliac vein stent implantation for hemodynamics at the bifurcation, Comput. Methods Biomech., 2022, 1–10, http://doi.org/ 10.1080/10255842.2022.2120352
  • [14] LI T., YANG S., HU F., GENG Q., LU Q., DING J., Effects of ankle pump exercise frequency on venous hemodynamics of the lower limb, Clin. Hemorheol. Microcirc., 2020, 76 (1), 111–120, http://doi.org/ 10.3233/CH-200860
  • [15] LI X., LIU X., LI X., XU L., CHEN X., LIANG F., Tortuosity of the superficial femoral artery and its influence on blood flow patterns and risk of atherosclerosis, Biomech. Model Mechanobiol., 2019, 18, 883–896, http://doi.org/10.1007/s10237-019-01118-4
  • [16] LIU J., LIU P., XIA K., CHEN L., WU X., Iliac vein compression syndrome (IVCS): an under-recognized risk factor for left-sided deep venous thrombosis (DVT) in old hip fracture patients, Med. Sci. Monitor, 2017, 23, 2078, http://doi.org/10.12659/MSM.901639
  • [17] MAFFIODO D., DE NISCO G., GALLO D., AUDENINO A., MORBIDUCCI U., FERRARESI C., A reduced-order model-based study on the effect of intermittent pneumatic compression of limbs on the cardiovascular system, P. I. Mech. Eng. H., 2016, 230 (4), 279–287, http://doi.org/10.1177/0954411916630337
  • [18] MORBIDUCCI U., GALLO D., MASSAI D., CONSOLO F., PONZINI R., ANTIGA L. et al., Outflow conditions for image-based hemodynamic models of the carotid bifurcation: implications for indicators of abnormal flow, J. Biomech. Eng., 2010, 132 (1), 1005–1015, http://doi.org/10.1115/1.4001886
  • [19] MORBIDUCCI U., GALLO D., PONZINI R., MASSAI D., ANTIGA L., MONTEVECCHI F.M. et al., Quantitative analysis of bulk flow in image-based hemodynamic models of the carotid bifurcation: the influence of outflow conditions as test case, Ann. Biomed. Eng., 2010, 38, 3688–3705, http://doi.org/ 0.1007/s10439-010-0102-7
  • [20] MURPHY E.H., JOHNS B., VARNEY E., BUCK W., JAYARAJ A., RAJU S., Deep venous thrombosis associated with caval extension of iliac stents, J. Vasc. Surg.-Venous L., 2017, 5 (1), 8–17, http://doi.org/10.1016/j.jvsv.2016.09.002
  • [21] NEGLÉN P., HOLLIS K.C., OLIVIER J., RAJU S., Stenting of the venous outflow in chronic venous disease: long-term stent-related outcome, clinical, and hemodynamic result, J. Vasc. Surg., 2007, 46 (5), 979–990, e1. http://doi.org/10.1016/j.jvs.2007.06.046
  • [22] NG J., BOURANTAS C.V., TORII R., ANG H.Y., TENEKECIOGLU E., SERRUYS P.W. et al., Local hemodynamic forces after stenting: implications on restenosis and thrombosis, Arterioscler., Thromb. Vasc., 2017, 37 (12), 2231–2242, http://doi.org/10.1161/ATVBAHA.117.309728
  • [23] OGUZKURT L., TERCAN F., OZKAN U., GULCAN O., Iliac vein compression syndrome: outcome of endovascular treatment with long-term follow-up, Eur. J. Radiol., 2008, 68 (3), 487–492, http://doi.org/10.1016/j.ejrad.2007.08.019
  • [24] POON E.K., BARLIS P., MOORE S., PAN W.-H., LIU Y., YE Y. et al., Numerical investigations of the haemodynamic changes associated with stent malapposition in an idealised coronary artery, J. Biomech., 2014, 47 (12), 2843–2851, http://doi.org/10.1016/ijbiomech.2014.07.030
  • [25] POULSON W., KAMENSKIY A., SEAS A., DEEGAN P., LOMNETH C., MACTAGGART J., Limb flexion-induced axial compression and bending in human femoropopliteal artery segments, J. Vasc. Surg., 2018, 67 (2), 607–613, http://doi.org/ 10.1016/j.jvs.2017.01.071
  • [26] RAJU S., TACKETT JR P., NEGLEN P., Reinterventions for nonocclusive iliofemoral venous stent malfunctions, J. Vasc. Surg., 2009, 49 (2), 511–518, http://doi.org/10.1016/j.jvs.2008.08.003
  • [27] RAJU S., WARD JR M., KIRK O., A modification of iliac vein stent technique, Ann. Vasc. Surg., 2014, 28 (6), 1485–1492, http://doi.org/10.1016/j.avsg.2014.02.026
  • [28] RESTAINO R.M., HOLWERDA S.W., CREDEUR D.P., FADEL P.J., PADILLA J., Impact of prolonged sitting on lower and upper limb micro- and macrovascular dilator function, Exp. Physiol., 2015, 100 (10), 829–838, http://doi.org/10.1113/ep085238
  • [29] ROLLO J.C., FARLEY S.M., JIMENEZ J.C., WOO K., LAWRENCE P.F., DERUBERTIS B.G., Contemporary outcomes of elective iliocaval and infrainguinal venous intervention for post-thrombotic chronic venous occlusive disease, J. Vasc. Surg.-Venous L., 2017, 5 (6), 789–799, http://doi.org/10.1016/j.jvsv.2017.05.020
  • [30] ROSSI F.H., KAMBARA A.M., RODRIGUES T.O., ROSSI C.B., IZUKAWA N.M., PINTO I.M. et al., Comparison of computed tomography venography and intravascular ultrasound in screening and classification of iliac vein obstruction in patients with chronic venous disease, J. Vasc. Surg.-Venous L., 2020, 8 (3), 413–422, http://doi.org/10.1016/j.jvs.2023.01.128
  • [31] SAKAI K., TAKAHIRA N., TSUDA K., Akamine AJJoOS, Effects of intermittent pneumatic compression on femoral vein peak venous velocity during active ankle exercise, J. Orthop. Surg.-Hong K., 2021, 29 (1), 2309499021998105, http://doi.org/10.1177/2309499021998105
  • [32] SAKAMOTO S., IKADO H., KAWARADA O., HARADA K., ISHIHARA M., YASUDA S. et al., Pulsatile high-velocity turbulent flow in lower extremity venous ultrasonography, Heart, 2014, 100 (10), 814–, http://doi.org/ 10.1136/heartjnl-2013-305309
  • [33] SALEEM T., RAJU S., An overview of in-stent restenosis in iliofemoral venous stents, , J. Vasc. Surg.-Venous L., 2022, 10 (2), 492–503, e2. http://doi.org/10.1016/j.jvsv.2021.10.011
  • [34] SMOUSE H.B., NIKANOROV A., LAFLASH D., Biomechanical forces in the femoropopliteal arterial segment, Endovascular Today, 2005, 4 (6), 60–66, http://doi.org/10.1053/j.tvir.2006.05.
  • [35] THOSAR S.S., JOHNSON B.D., JOHNSTON J.D., WALLACE J.P., Sitting and endothelial dysfunction: the role of shear stress, Med. Sci. Monitor, 2012, 18, RA173, http://doi.org/10.12659/MSM.883589
  • [36] TRESSON P., HUBLET A., HOLDNER A., BORDET M., MILLON A., PAPILLARD M. et al., Common Femoral Artery Curvature During Hip Flexion, CardioVasc. Interventional Radiol., 2023, 1–8, http://doi.org/10.1007/s00270-023-03479-x
  • [37] WALSH L.K., RESTAINO R.M., MARTINEZ-LEMUS L.A., PADILLA J., Prolonged leg bending impairs endothelial function in the popliteal artery, Physiol. Rep., 2017, 5 (20), e13478, http://doi.org/ 10.14814/phy2.13478
  • [38] WANG J., JIN X., HUANG Y., RAN X., LUO D., YANG D. et al., Endovascular stent-induced alterations in host artery mechanical environments and their roles in stent restenosis and late thrombosis, Regener. Biomater., 2018, 5 (3), 177–187, http://doi.org/org/10.1093/rb/rby006
  • [39] WOOD N.B., ZHAO S.Z., ZAMBANINI A., JACKSON M., GEDROYC W., THOM S.A. et al., Curvature and tortuosity of the superficial femoral artery: a possible risk factor for peripheral arterial disease, J. Appl. Physiol., 2006, 101 (5), 1412–1418, http://doi.org/10.1152/japplphysiol.00051.2006
  • [40] YANG L., LIU J., CAI H., LIU Y., The clinical outcome of a one-stop procedure for patients with iliac vein compression combined with varicose veins, J. Vasc. Surg.-Venous L., 2018, 6 (6), 696–701, http://doi.org/10.1016/j.jvsv.2018.06.012
  • [41] YOUN Y.J., LEE J., Chronic venous insufficiency and varicose veins of the lower extremities, The Korean Journal of Internal Medicine, 2019, 34 (2), 269, http://doi.org/10.3904/kjim.2018.230.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5731bb9c-55b0-48ff-af38-27f5de1aac70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.