PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CFD Analysis of an Innovative Wind Tower Design with Wind-Inducing Natural Ventilation Technique for Arid Climatic Conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wind towers are passive architectural elements traditionally used to ventilate buildings in the Middle East’s hot and arid regions. Some recent design initiatives in Jordan are particularly interested in using passive systems for natural ventilation. This paper focuses on an innovative wind tower design as a passive ventilation system, which will be integrated into a train station design in Aqaba, Jordan to improve the air quality in indoor spaces and reduce the cooling loads. The design uses wind-induced effects as the motivating forces to improve natural ventilation. The study optimized the wind tower and evaluated its performance using Autodesk Computational Fluid Dynamics (CFD) simulations and Grasshopper Rhino plug-ins. Airflow and distribution through the tower were analyzed using the CFD model. Grasshopper definitions were used to examine the tower efficiency in lowering the indoor air temperature. Simulations indicated the potential of the proposed wind tower to reduce the temperature by 6.164°C and supply the interior space with the required fresh air rates. This article outlines how wind towers can be used in contemporary architecture and incorporate the simulation methods to pave the way for architects to effectively validate the performance of their design proposals at the early design stage.
Rocznik
Strony
86--97
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Department of Architecture, College of Architecture and Design, Jordan University of Science and Technology, 3030, Irbid 22110, Jordan
autor
  • Department of Architecture, College of Architecture and Design, Jordan University of Science and Technology, 3030, Irbid 22110, Jordan
  • Department of Architecture, College of Architecture and Design, Jordan University of Science and Technology, 3030, Irbid 22110, Jordan
Bibliografia
  • 1. Abu-Ghazalah, S. 2008. The sustainable city development plan for Aqaba, Jordan. Journal of Developing Societies, 24(3), 381–398.
  • 2. Alzoubi, H. H., & Malkawi, A. T. 2011. Investigating the Effect of Building Orientation on Thermal Comfort and Energy consumption in Educational Buildings. Paper presented at the Global Conference on Renewable energy and Energy Efficiency for Desert Regions.
  • 3. Aynsley, R. 2014. Natural ventilation in passive design. Environment Design Guide, 1–16.
  • 4. Badran, A. A. 2003. Performance of cool towers under various climates in Jordan. Energy and Buildings, 35(10), 1031–1035.
  • 5. Bahadori, M. N. 1985. An improved design of wind towers for natural ventilation and passive cooling. Solar Energy, 35(2), 119–129.
  • 6. Billington, N. S., & Roberts, B. M. 1982. Building services engineering: a review of its development: Pergamon Press Oxford.
  • 7. Calautit, J. K., Hughes, B. R., & Sofotasiou, P. 2015. Design and Optimisation of a Novel Passive Cooling Wind Tower.
  • 8. Chenari, B., Carrilho, J. D., & da Silva, M. G. 2016. Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review. Renewable and Sustainable Energy Reviews, 59, 1426–1447.
  • 9. Drees, K. H., Wenger, J. D., & Janu, G. 1992. Ventilation air flow measurement for ASHRAE Standard 62–1989. ASHRAE Journal (American Society of Heating, Refrigerating and Air-Conditioning Engineers);(United States), 34(10).
  • 10. Fathy, H. 1986. Natural energy and vernacular architecture.
  • 11. Ghadiri, M. H., Ibrahim, N. L. N., & Dehnavi, M. 2011. The effect of tower height in square plan wind catcher on its thermal behavior. Australian Journal of Basic and Applied Sciences, 5(9), 381–385.
  • 12. Ghiaus, C., & Roulet, C.-A. 2005. Strategies for natural ventilation. Natural ventilation in the urban environment: Assessment and design, 136–157.
  • 13. Gil-Baez, M., Barrios-Padura, Á., Molina-Huelva, M., & Chacartegui, R. 2017. Natural ventilation systems in 21st-century for near zero energy school buildings. Energy, 137, 1186–1200.
  • 14. Grondzik, W. T., & Kwok, A. G. 2019. Mechanical and electrical equipment for buildings: John wiley & sons.
  • 15. Haghighi, A., Golshaahi, S., & Abdinejad, M. 2015. A study of vaulted roof assisted evaporative cooling channel for natural cooling of 1-floor buildings. Sustainable Cities and Society, 14, 89–98.
  • 16. Haw, L. C., Saadatian, O., Sulaiman, M., Mat, S., & Sopian, K. 2012. Empirical study of a wind-induced natural ventilation tower under hot and humid climatic conditions. Energy and Buildings, 52, 28–38.
  • 17. Hughes, B. R., Calautit, J. K., & Ghani, S. A. 2012. The development of commercial wind towers for natural ventilation: A review. Applied energy, 92, 606–627.
  • 18. Jaber, J. O. 2002. Future energy consumption and greenhouse gas emissions in Jordanian industries. Applied energy, 71(1), 15–30.
  • 19. Jiang, Y., Li, K., Tian, L., Piedrahita, R., Yun, X., Mansata, O., . . . Shang, L. 2011. MAQS: a personalized mobile sensing system for indoor air quality monitoring. Paper presented at the Proceedings of the 13th international conference on Ubiquitous computing.
  • 20. Jomehzadeh, F., Nejat, P., Calautit, J. K., Yusof, M. B. M., Zaki, S. A., Hughes, B. R., & Yazid, M. N. A. W. M. 2017. A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment. Renewable and Sustainable Energy Reviews, 70, 736–756.
  • 21. Kalantar, V. 2009. Numerical simulation of cooling performance of wind tower (Baud-Geer) in hot and arid region. Renewable Energy, 34(1), 246–254.
  • 22. Khan, N., Su, Y., & Riffat, S. B. 2008. A review on wind driven ventilation techniques. Energy and Buildings, 40(8), 1586–1604.
  • 23. Li, J., Delmas, A., Donn, M., & Willis, R. 2018. Validation and comparison of different CFD simulation software predictions of urban wind environment based on AIJ wind tunnel benchmarks. Paper presented at the Proceedings of the Symposium on Simulation for Architecture and Urban Design.
  • 24. Lim, C. H., Saadatian, O., Sulaiman, M. Y., Mat, S., & Sopian, K. 2012. Air Changes and Extraction Flow Rate Analysis of Wind-Induced Natural Ventilation Tower under hot and humid climatic conditions. Paper presented at the IEEE Business, Eng. Ind. Appl. Colloq.
  • 25. Montazeri, H. 2011. Experimental and numerical study on natural ventilation performance of various multi-opening wind catchers. Building and Environment, 46(2), 370–378.
  • 26. Montazeri, H., & Azizian, R. 2008. Experimental study on natural ventilation performance of onesided wind catcher. Building and Environment, 43(12), 2193–2202.
  • 27. Montazeri, H., & Montazeri, F. 2018. CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings. Renewable Energy, 118, 502–520.
  • 28. Oliver, P. 1997. Encyclopedia of vernacular architecture of the world (Vol. 3): Cambridge University Press Cambridge.
  • 29. Omer, A. M. 2008. Renewable building energy systems and passive human comfort solutions. Renewable and Sustainable Energy Reviews, 12(6), 1562–1587.
  • 30. Papadopoulos, A., & Avgelis, A. 2003. Indoor environmental quality in naturally ventilated office buildings and its impact on their energy performance. International Journal of Ventilation, 2(3), 203–212.
  • 31. Pearlmutter, D., Erell, E., Etzion, Y., Meir, I., & Di, H. 1996. Refining the use of evaporation in an experimental down-draft cool tower. Energy and Buildings, 23(3), 191–197.
  • 32. Roudsari, M. S., Pak, M., & Smith, A. 2013. Ladybug: a parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design. Paper presented at the Proceedings of the 13th international IBPSA conference held in Lyon, France Aug.
  • 33. Sherman, M. H. 2004. ASHRAE’s first residential ventilation standard. Proc. Buildings.
  • 34. Yu, Y., You, S., Zhang, H., Ye, T., Zheng, X., & Wang, Y. 2019. Review of Passive Strategies for Ventilation and Air-Conditioning Energy Saving in Underground Metro Stations.
  • 35. Zaki, A., Richards, P., & Sharma, R. 2019. Analysis of airflow inside a two-sided wind catcher building. Journal of Wind Engineering and Industrial Aerodynamics, 190, 71–82.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-572c05ae-5fec-4235-a0ec-6022cb5e01fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.