PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantitative evaluation and chromatographic fingerprinting for the quality assessment of Pudilan tablet

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An easy, quick, and sensitive approach adopting ultra-performance liquid chromatography (UPLC) equipped with diode array detector was used to analyze and systematically evaluate the quality of Pudilan tablets manufactured by 12 distinct pharmaceutical companies. In this research, 15 peaks were chosen as the common peaks to assess the similarities for different batches (S1–S43) of Pudilan tablet samples. In comparison with the control fingerprint, similarity values for 43 batches of samples exceeded 0.922. In addition, by analyzing the reference substances of epigoitrin, caffeic acid, chlorogenic acid, acetylcorynoline, baicalin and baicanshialein, the chromatogram of the 6 reference substances was established. The recoveries for the reference substances which demonstrated good regression in the linear range (r2 > 0.999) were in the range of 98.3–101.1%. The results demonstrated that the established method was highly accurate, efficient and reliable. This study provides a valid, dependable and pragmatic method to evaluate the quality of Pudilan tablet.
Rocznik
Strony
338--346
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
  • School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
  • School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
autor
  • School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
  • School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
autor
  • Medical Department, Taihe Hospital of Chinese Medicine, Taihe 236600, China
autor
  • Department of Research and Development, Anhui Jiren Pharmaceutical Company, Bozhou 236800, China
autor
  • School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
autor
  • School of Life Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
Bibliografia
  • 1. Bosch, A. A.; Biesbroek, G.; Trzcinski, K.; Sanders, E. A.; Bogaert, D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog. 2013, 9(1), e1003057.
  • 2. Kompanikova, J.; Zumdick, A.; Neuschlova, M.; Sadlonova, V.; Novakova, E. Microbiologic methods in the diagnostics of upper respiratory tract pathogens. Adv. Exp. Med. Biol. 2017, 1020, 25–31.
  • 3. Hviid, A.; Rubin, S.; Muhlemann, K. Mumps. Lancet 2008, 371(9616), 932–44.
  • 4. Zeppa, P.; Cozzolino, I. Lymphadenitis and lymphadenopathy. Monogr. Clin. Cytol. 2018, 23, 19–33.
  • 5. Sanders, O.; Bolton, L.; Nemeth, Z.; Hardy, A.; Meghji, S. A 4-year retrospective study of tonsillectomy rate and admission rate of tonsillitis and complications in the East of England and nationally. Eur. Arch. Otorhinolaryngol.: Off. J. Eur. Fed. Otorhinolaryngol. Soc. 2021, 278(7), 2613–8.
  • 6. Bai, Y.; Li, Y. X.; Shi, Y. J.; Zhao, H. Y. Meta-analysis on effectiveness and safety of Pudilan Xiaoyan Oral Liquid on child upper respiratory infection. Zhongguo Zhong yao Za Zhi = Zhongguo zhongyao zazhi = China J. Chin. Mater. Med. 2020, 45(9), 2203–9.
  • 7. Liang, Y. Z.; Xie, P. S.; Chan, K. Chromatographic fingerprinting and metabolomics for quality control of TCM. Comb. Chem. High Throughput Screen. 2010, 13(10), 943–53.
  • 8. Alaerts, G.; Dejaegher, B.; Smeyers-Verbeke, J.; Vander Heyden, Y. Recent developments in chromatographic fingerprints from herbal products: set-up and data analysis. Comb. Chem. High Throughput Screen. 2010, 13(10), 900–22.
  • 9. Xie, P.; Chen, S.; Liang, Y. Z.; Wang, X.; Tian, R.; Upton, R. Chromatographic fingerprint analysis–a rational approach for quality assessment of traditional Chinese herbal medicine. J. Chromatogr. A 2006, 1112(1–2), 171–80.
  • 10. Goodarzi, M.; Russell, P. J.; Vander Heyden, Y. Similarity analyses of chromatographic herbal fingerprints: a review. Analytica Chim. Acta 2013, 804, 16–28.
  • 11. Krol-Kogus, B.; Lamine, K. M.; Migas, P.; Boudjeniba, M.; Krauze-Baranowska, M. HPTLC determination of diosgenin in fenugreek seeds. Acta Pharmaceutica 2018, 68(1), 97–107.
  • 12. Sethuraman, V.; Janakiraman, K.; Krishnaswami, V.; Natesan, S.; Kandasamy, R. Combinatorial analysis of quercetin and resveratrol by HPTLC in Sesbania grandiflora/phyto-based nanoformulations. Nat. Prod. Res. 2021, 35(13), 2243–8.
  • 13. Hazra, A. K.; Chakraborty, B.; Mitra, A.; Sur, T. K. A rapid HPTLC method to estimate piperine in Ayurvedic formulations. J. Ayurveda Integr. Med. 2019, 10(4), 248–54.
  • 14. Naguib, I. A.; Magdy, M. A.; Anwar, B. H.; Abdelhamid, N. S. A validated green HPTLC method for quantitative determination of dapoxetine hydrochloride and tadalafil in bulk and pharmaceutical formulations. J. Chromatogr. Sci. 2020, 58(4), 303–8.
  • 15. Wang, Z.; Benning, C. Arabidopsis thaliana polar glycerolipid profiling by thin layer chromatography (TLC) coupled with gas-liquid chromatography (GLC). J. Vis. Exp.: JoVE 2011, (49).
  • 16. Ferenczi-Fodor, K.; Vegh, Z.; Renger, B. Impurity profiling of pharmaceuticals by thin-layer chromatography. J. Chromatogr. A 2011, 1218(19), 2722–31.
  • 17. Abdelwahab, N. S.; Ali, N. W.; Abdelkawy, M.; Emam, A. A. Validated RP-HPLC and TLC-densitometric methods for analysis of ternary mixture of cetylpyridinium chloride, chlorocresol and lidocaine in oral antiseptic formulation. J. Chromatogr. Sci. 2016, 54(3), 318–25.
  • 18. Hetrick, E. M.; Shi, Z.; Harms, Z. D.; Myers, D. P. Sample mass estimate for the use of near-infrared and Raman spectroscopy to monitor content uniformity in a tablet press feed frame of a drug product continuous manufacturing process. Appl. Spectrosc. 2021, 75(2), 216–24.
  • 19. Mazurek, S.; Szostak, R. Quantitative determination of prednisone in tablets by infrared attenuated total reflection and Raman spectroscopy. J. AOAC Int. 2012, 95(3), 744–50.
  • 20. Mao, J.; Xu, J. Discrimination of herbal medicines by molecular spectroscopy and chemical pattern recognition. Spectrochimica Acta. Part A, Mol. Biomol. Spectrosc. 2006, 65(2), 497–500.
  • 21. Perez-Galvez, A.; Viera, I.; Roca, M. Acquisition of mass spectrometry data of carotenoids: a focus on big data management. Methods Mol. Biol. 2020, 2083, 135–44.
  • 22. Goto-Inoue, N.; Hayasaka, T.; Setou, M. Imaging mass spectrometry of glycolipids. Methods Enzymol. 2010, 478, 287–301.
  • 23. Lockwood, G. B. Techniques for gas chromatography of volatile terpenoids from a range of matrices. J. Chromatogr. A 2001, 936(1–2), 23–31.
  • 24. Priddis, C. R. Capillary gas chromatography of lupin alkaloids. J. Chromatogr. 1983, 261(1), 95–101.
  • 25. Horie, H.; Kohata, K. Analysis of tea components by high-performance liquid chromatography and high-performance capillary electrophoresis. J. Chromatogr. A 2000, 881(1–2), 425–38.
  • 26. Pan, Z.; Peng, J.; Zang, X.; Peng, H.; Xiao, H.; Bu, L.; Chen, F.; He, Y.; Chen, Y.; Wang, X.; Li, S.; Chen, Y. High-performance liquid chromatography study of gatifloxacin and sparfloxacin using erythrosine as post-column resonance Rayleigh scattering reagent and mechanism study. Lumin.: J. Biol. Chem. Lumin. 2018, 33(2), 417–24.
  • 27. Angi, C.; Lurie, I. S.; Marginean, I. Analysis of fentanyl derivatives by ultra high performance liquid chromatography with diode array ultraviolet and single quadrupole mass spectrometric detection. J. Separat. Sci. 2019, 42(9), 1686–94.
  • 28. Zhu, Y.; Ju, R.; Ma, F.; Qian, J.; Yan, J.; Li, S.; Li, Z. Moisture variation analysis of the green plum during the drying proces based on low-field nuclear magnetic resonance. J. Food Sci. 2021, 86(12), 5137–47.
  • 29. Salvino, R. A.; Aroulanda, C.; De Filpo, G.; Celebre, G.; De Luca, G. Metabolic composition and authenticity evaluation of bergamot essential oil assessed by nuclear magnetic resonance spectroscopy. Anal. Bioanal. Chem. 2022, 414(6), 2297–313.
  • 30. Naveen Kumar, M. S.; Gupta, G.; Kumar, V.; Jagannathan, N. R.; Sinha, S.; Mewar, S.; Kumar, P. Differentiation between sepsis survivors and sepsis non-survivors through blood serum metabolomics: a proton nuclear magnetic resonance spectroscopy(NMR) study. Magn. Reson. Imaging 2022, 89, 49–57.
  • 31. Aries, M. L.; Cloninger, M. J. NMR metabolomic analysis of bacterial resistance pathways using multivalent quaternary ammonium functionalized macromolecules. Metabolomics: Off. J. Metabolomic Soc. 2020, 16(8), 82.
  • 32. Pena-Lorenzo, D.; Rebollo, N.; Sanchez-Hernandez, J. G.; Zarzuelo-Castaneda, A. Comparison of ultra-performance liquid chromatography and ARK immunoassay for therapeutic drug monitoring of voriconazole. Ann. Clin. Biochem. 2021, 58(6), 657–60.
  • 33. d’Oliveira, G. D. C.; Chaves, A. R.; Perez, C. N. Development and analytical validation of the methodology for vitamins in tablets by ultra-performance liquid chromatography. J. Chromatogr. Sci. 2020, 57(10), 881–91.
  • 34. Song, C.; Zhang, H.; Guo, Z.; Yan, J.; Jin, G.; Liang, X. Determination of five protopanaxadiol ginsenosides in ginseng by solid-phase extraction-ultra performance liquid chromatography. Se pu = Chin. J. Chromatogr. 2020, 38(5), 547–53.
  • 35. Kang, L.; Lin, C.; Ning, F.; Sun, X.; Zhang, M.; Zhang, H.; Wang, Y.; Hu, P. Rapid determination of folic acid and riboflavin in urine by polypyrrole magnetic solid-phase extractant combined ultra-performance liquid chromatography. J. Chromatogr. A 2021, 1648, 462192.
  • 36. Nahar, L.; Onder, A.; Sarker, S. D. A review on the recent advances in HPLC, UHPLC and UPLC analyses of naturally occurring cannabinoids (2010–2019). Phytochem. Anal.: PCA 2020, 31(4), 413–57.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-572a627b-f230-4eea-93df-826e167b34ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.