PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biomedical applications of nanoparticles of chitosan from marine waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The review focuses on chitosan nanoparticle synthesis and its biomedical applications. The review briefly explains the biomedical applications of antimicrobials, cancer therapy, gene therapy, and anti-ageing. Notably, the chitosan biological activity can be further increased by coating metal ions such as iron oxide nanoparticles, gold nanoparticles, etc. Design/methodology/approach: Chitosan is the N-acetyl derivative of chitin, which has the unique properties of biodegradability, non-toxicity, polycationic property and biocompatibility— no reports of ZnO sulphated chitosan nanoparticles being produced for antibacterial. We hope for the conduction of antibacterial research of ZnO sulphated chitosan nanoparticles. Findings: The study establishes that metal oxide nano-CH, characterised by an expanded size range beyond conventional parameters, exhibits a broad spectrum of biomedical applications. Its commendable biological attributes, encompassing biocompatibility, non-toxicity, and biodegradability, make it a vehicle for drug delivery in medicine. Research limitations/implications: Nanomedicine is an emerging branch of medicine that applies tools and the basis of nanotechnology for disease prevention, treatment and diagnosis. Moreover, it helps overcome conventional medicine's limitations, including adverse side effects, poor pharmacokinetics and lack of selectivity. Originality/value: Using chitosan extracted from marine waste presents economic advantages. Furthermore, when coated with metal oxide nanoparticles, it enhances biomedical efficacy. Chitosan is an effective drug delivery vehicle, and its theranostic applications are valuable in the biomedical sector.
Rocznik
Strony
71--75
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603 103, Tamil Nadu, India
autor
  • Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603 103, Tamil Nadu, India
autor
  • Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603 103, Tamil Nadu, India
  • Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603 103, Tamil Nadu, India
autor
  • Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603 103, Tamil Nadu, India
autor
  • Department Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603 103, Tamil Nadu, India
  • Native Medicine and Marine Pharmacology Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603 103, Tamil Nadu, India
Bibliografia
  • 1. H. Yabu, Fabrication of nanostructured composite microspheres based on the self‐assembly of polymers and functional nanomaterials, Particle and Particle Systems Characterization 36/9 (2019) 1900178. DOI: https://doi.org/10.1002/ppsc.201900178
  • 2. M.D. Teli, J. Sheikh, Extraction of chitosan from shrimp shells waste and application in antibacterial finishing of bamboo rayon, International Journal of Biological Macromolecules 50/5 (2012) 1195-1200. DOI: https://doi.org/10.1016/j.ijbiomac.2012.04.003
  • 3. M.-T. Yen, J.-H. Yang, J.-L. Mau, Antioxidant properties of chitosan from crab shells, Carbohydrate Polymers 74/4 (2008) 840-844. DOI: https://doi.org/10.1016/j.carbpol.2008.05.003
  • 4. V. Manigandan, J. Nataraj, R. Karthik, T. Manivasagam, R. Saravanan, A.J. Thenmozhi, M.M. Essa, G.J. Guillemin, Low molecular weight sulfated chitosan: neuroprotective effect on rotenone-induced in vitro Parkinson’s disease, Neurotoxicity Research 35/3 (2019) 505-515. DOI: https://doi.org/10.1007/s12640-018-9978-z
  • 5. P. Ramasamy, N. Subhapradha, T. Thinesh, J. Selvin, K.M. Selvan, V. Shanmugam, A. Shanmugam, Characterization of bioactive chitosan and sulfated chitosan from Doryteuthis singhalensis (Ortmann, 1891), International Journal of Biological Macromolecules 99 (2017) 682-691. DOI: https://doi.org/10.1016/j.ijbiomac.2017.03.041
  • 6. T. Wang, Q. Xu, Y. Wu, A. Zeng, M. Li, H. Gao, Quaternized chitosan (QCS)/poly (aspartic acid) nanoparticles as a protein drug-delivery system, Carbohydrate Research 344/7 (2009) 908-914. DOI: https://doi.org/10.1016/j.carres.2009.02.018
  • 7. R. Karthik, V. Manigandan, R. Saravanan, R.P. Rajesh, B. Chandrika, Structural characterization and in vitro biomedical activities of sulfated chitosan from Sepia pharaonis, International Journal of Biological Macromolecules 81 (2016) 319-328. DOI: https://doi.org/10.1016/j.ijbiomac.2015.12.030
  • 8. L. Qi, Z. Xu, Lead sorption from aqueous solutions on chitosan nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects 251/1-3 (2004) 183-190. DOI: https://doi.org/10.1016/j.colsurfa.2004.10.010
  • 9. G. Arya, M. Vandana, S. Acharya, S.K. Sahoo, Enhanced antiproliferative activity of Herceptin (HER2)-conjugated gemcitabine-loaded chitosan nanoparticle in pancreatic cancer therapy, Nanomedicine: Nano¬technology, Biology and Medicine 7/6 (2011) 859-870. DOI: https://doi.org/10.1016/j.nano.2011.03.009
  • 10. A. Babu, N. Amreddy, R. Muralidharan, G. Pathuri, H. Gali, A. Chen, Y.D. Zhao, A. Munshi, R. Ramesh, Chemodrug delivery using integrin-targeted PLGA-Chitosan nanoparticle for lung cancer therapy, Scientific Reports 7/1 (2017) 14674. DOI: https://doi.org/10.1038/s41598-017-15012-5
  • 11. A. Babu, R. Ramesh, Multifaceted applications of chitosan in cancer drug delivery and therapy, Marine Drugs 15/4 (2017) 96. DOI: https://doi.org/10.3390/md15040096
  • 12. U.S. Barreras, F.T. Méndez, R.E. Martínez, C.S. Valencia, P.R. Rodríguez, J.P. Rodríguez, Chitosan nanoparticles enhance the antibacterial activity of chlorhexidine in collagen membranes used for periapical guided tissue regeneration, Materials Science and Engineering: C 58 (2016) 1182-1187. DOI: https://doi.org/10.1016/j.msec.2015.09.085
  • 13. M.-C. Chen, M.-H. Ling, K.-Y. Lai, E. Pramudityo, Chitosan microneedle patches for sustained transdermal delivery of macromolecules, Biomacromolecules 13/12 (2012) 4022-4031. DOI: https://doi.org/10.1021/bm301293d
  • 14. M.C. Bonferoni, G. Sandri, E. Dellera, S. Rossi, F. Ferrari, M. Mori, C. Caramella, Ionic polymeric micelles based on chitosan and fatty acids and intended for wound healing. Comparison of linoleic and oleic acid, European Journal of Pharmaceutics and Biopharmaceutics 87/1 (2014) 101-106. DOI: https://doi.org/10.1016/j.ejpb.2013.12.018
  • 15. S. Mansouri, Y. Cuie, F. Winnik, Q. Shi, P. Lavigne, M. Benderdour, E. Beaumont, J.C. Fernandes, Characterization of folate-chitosan-DNA nanoparticles for gene therapy, Biomaterials 27/9 (2006) 2060-2065. DOI: https://doi.org/10.1016/j.biomaterials.2005.09.020
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-572714e7-bfce-45ab-8748-c79423f8375f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.