PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Virtual factory as a method of foundry design and production management

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper outlines the methodology of virtual design of a foundry plant as a system. The most important stage in the procedure involves the development of a model defined as a set of data about the system. Model development involves two stages: defining the model’s architecture and specifying the model data in the form of parameters and input-output relationships. The structure is understood as configuration of machines and transport units, representing the sub-systems and system components. As the main purpose of the simulation procedure is to find the characteristics of the system’s behaviour, the merits of the iterative method involving analysis, synthesis and evaluation of results are fully explored.
Rocznik
Strony
113--118
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Management, Gramatyka 10, 30-067 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-059 Krakow, Poland
Bibliografia
  • [1] Bal, M. &Hashemipour, M. (2009). Virtual factory approach for implementation of holonic control in industrial applications: A case study in die-casting industry. Robotics and Computer-Integrated Manufacturing. 25(3), 570-581. DOI: 10.1016/j.rcim.2008.03.020.
  • [2] Burdea G.C. (1999). Invited review: the synergy between virtual reality and robotics. IEEE Transactions on Robotics and Automation. 15(3), 400-410.
  • [3] Creighton, D. & Nahavandi, S. (2003). Application of discrete event simulation for robust system design of a melt facility. Robotics and Computer Integrated Manufacturing. 19, 469-477. DOI: 10.1016/S0736-5845(03)00057-7.
  • [4] Fishman, G.S. (1996) Monte Carlo. Concepts, Algorithms and Applications. New York: Springer-Verlag.
  • [5] Macioł, A., Stawowy, A. & Wrona, R. (2005). Zastosowanie symulacji komputerowej do projektowania odlewni. Archiwum Odlewnictwa. 5(17), 155-162.
  • [6] O’Kane, J.F., Spenceley, J.F., Taylor, R.. (2000). Simulation as an essential tool for advanced manufacturing technology problems. Journal of Materials Processing Technology. 107(1-3), 412-424. DOI: 10.1016/S0924-0136(00)00689-0.
  • [7] Okulicz K. (2004).Virtual reality-based approach to manufacturing process planning. International Journal of Production Research. 42(17), 3493-3504. DOI: 10.1080/00207540410001699426.
  • [8] Schenk, M., Straßburger, S., Kissner, H. (2005). Combining virtual reality and assembly simulation for production planning and worker qualification. In 1st International Conference on Changeable, Agile, Reconfigurable and Virtual Production, 22-23 September 2005 (411-414). Garching, Germany: Technische Universität München.
  • [9] Ravi, B., Datta, G.L. (2006). Co-operative virtual foundry for cost-effective casting simulation. In 54th Indian Foundry Congress, 21-23 January 2006. Pune, India: Institute of Indian Foundrymen.
  • [10] VFF: Virtual Factory Framework. Retrieved June 11, 2012, from http://www.ims.org/2011/11/vff-virtual-factory-framework/.
  • [11] Wrona, R., Stawowy, A., Macioł A. (2006). Podstawy inżynierii projektowania odlewni. Kraków: Pandit.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57258dbb-c0aa-4b22-9529-6ccdb2954de0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.