PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Improvement of metal separation process from synthetic hydrochloric acid leaching solution of spent lithium ion batteries by solvent extraction and ion exchange

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spent lithium-ion batteries (LIBs) are good secondary resources for recycle and reuse. To develop a process for the separation of Cu(II), Co(II), Mn(II), Ni(II) and Li(I) with high purity from spent LIBs and circumvent some drawbacks of the previous work, solvent extraction and ion exchange experiments were done in this work. The synthetic hydrochloric acid leaching solution of 3 M was employed. Compared to Aliquat 336 (N-Methyl- N, N, N-trioctyl ammonium chloride), extraction with Cyanex 301 (bis(2,4,4-trimethylpentyl) dithiophosphinic acid) led to selective extraction of Cu(II) over other metal ions. Employing ion exchange with TEVA-SCN resin can completely separate Co(II) over Mn(II). After adjusting the pH of Co(II) free raffinate to 3, Mn(II) was quantitatively extracted by the mixture of Alamine 336 (mixture of tri-octyl/decyl amine) and PC 88A (2-ethylhexyl hydrogen-2-ethylhexylphosphonate) with two stage cross-current extraction. The synthesized ionic liquid (ALi-CY) was used for complete extraction of Ni(II), whereas Li(I) remained in final raffinate. The metal ions in the loaded organic phase were completely stripped with the proper agents (5% aqua regia for Cu(II), 5% NH3 for Co(II), weak H2SO4 solution for Mn(II) and Ni(II) stripping, respectively). The experimental results revealed that purity of the metal ions in stripping solution was higher than 99.9%. A flowsheet was suggested to separate metal ions from the HCl leaching solutions of spent LIBs.
Rocznik
Strony
1--17
Opis fizyczny
Bibliogr. 39 poz., rys. kolor.
Twórcy
  • Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University, Chonnam 534-729, Republic of Korea
  • Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University, Chonnam 534-729, Republic of Korea
Bibliografia
  • CHAGNES, A., POSPIECH, B., 2013. A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. J. Chem. Technol. Biotechnol 88, 1191–1199.
  • CHEN, X., XU, B., ZHOU, T., LIU, D., HU, H., FAN, S., 2015. Separation and recovery of metal values from leaching liquor of mixed-type of spent lithium-ion batteries. Sep. Purif. Technol 144, 197–205..
  • CHIU, K.L., CHEN, W.S., 2017. Recovery and separation of valuable metals from cathode materials of spent lithiumion batteries (Libs) by ion exchange. Sci. Adv. Mater 9(12), 2155-2160. https://doi.org/10.1166/sam.2017.3214.
  • DIEBLER, H., HÖGFELDT, E. (Ed.)., 1983. Stability Constants of Metal-Ion Complexes, Part A: Inorganic Ligands. Ber Bunsen Phys Chem. 87, 1227–1227.
  • FLEITLIKH, I.Y., GRIGORIEVA, N.A., LOGUTENKO, O.A., 2018. Extraction of Non-Ferrous Metals and Iron with Systems based on Bis(2,4,4-Trimethylpentyl)Dithiophosphinic Acid (CYANEX 301), A Review. Solvent Extr. Ion Exch 36, 1-21.
  • FORTUNY, A., COLL, M.T., SASTRE, A.M., 2012. Use of methyltrioctyl/decylammonium bis 2,4,4-(trimethylpentyl)phosphinate ionic liquid (ALi-CY IL) on the boron extraction in chloride media. Sep. Purif. Technol 97, 137–141.
  • GAMMONS, C.H., SEWARD, T.M., 1996. Stability of manganese (II) chloride complexes from 25 to 300°C. Geochim. Cosmochim. Acta 60, 4295–4311.
  • GMAR, S., MUTELET, .F, CHAGNES, A., 2020. Effect of the Addition of Amine in Organophosphorus Compounds on Molecular Structuration of Ionic Liquids–Application to Solvent Extraction. Molecules 25(11), 2584.
  • HOH, Y.C., CHUANG, W.S., LEE, B.D., CHANG, C.C., 1984. The separation of manganese from cobalt by D2EHPA. Hydrometallurgy 12, 375–386.
  • JAKOVLJEVIC, B., BOURGET, C., NUCCIARONE D., 2004. Cyanex 301 Binary Extractant Systems in Cobalt/Nickel Recovery from Acidic Chloride Solutions. Hydrometallurgy 75, 25–36.
  • JOULIÉ, M., LAUCOURNET, R., BILLY, E., 2014. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries. J. Power Sources 247, 551–555.
  • LEE, M.S., OH, Y.J., 2004. Estimation of thermodynamic properties and ionic equilibria of cobalt chloride solution at 298 K. Mater. Trans 45, 1317–1321.
  • LE, M.N., SON, S.H., LEE, M.S., 2019. Extraction behavior of hydrogen ion by an ionic liquid mixture of Aliquat 336 and Cyanex 272 in chloride solution. J. Korean Inst. Met. Mater 57, 162–169.
  • LEE, S.A., LEE, M.S., 2019. Selective Extraction of Cu(II) from Sulfuric Acid Leaching Solutions of Spent Lithium Ion Batteries Using Cyanex 301. Korean J. Met. Mater 57(9), 596-602.
  • LIU, Y., JEON, H.S., LEE, M.S., 2015. Separation of Pr and Nd from La in chloride solution by extraction with a mixture of Cyanex 272 and Alamine 336. Met. Mater. Int 21, 944–949.
  • LOMMELEN R., HOOGERSTRAETE T.V. , ONGHENA B., BILLARD I., BINNEMANS K., 2019. Model for Metal Extraction from Chloride Media with Basic Extractants: A Coordination Chemistry Approach. Inorg. Chem., American Chemical Society, In press. http://doi.org/10.1021/acs.inorgchem.9b01782.
  • NAN, J., HAN, D., ZUO, X., 2005. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction. J. Power Sources 152, 278–284.
  • NAYL, A.A., 2010. Extraction and separation of Co(II) and Ni(II) from acidic sulfate solutions using Aliquat 336. J. Hazard. Mater 173, 223–230.
  • NGUYEN, V.N.H., LEE, M.S., 2020a. Separation of Co(II), Cu(II), Ni(II) and Mn(II) from synthetic hydrochloric acid leaching solution of spent lithium ion batteries by solvent extraction. Physicochem. Probl. Miner. Process 56, 599–610.
  • NGUYEN, V.N.H., LEE, M.S., 2020b. Separation of Co(II), Ni(II), Mn(II) and Li(I) from synthetic sulfuric acid leaching solution of spent lithium ion batteries by solvent extraction. J Chem Techol Biotechnol, 96, 1205-1217
  • ORDOÑEZ, J., GAGO, E.J., GIRARD, A., 2016. Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renew. Sustain. Energy Rev. 60, 195–205.
  • PORVALI, A., AALTONEN, M., OJANEN, S., VELAZQUEZ-MARTINEZ, O., ERONEN, E., LIU, F., WILSON, B.P., SERNA-GUERRERO, R., LUNDSTRÖM, M., 2019. Mechanical and hydrometallurgical processes in HCl media for the recycling of valuable metals from Li-ion battery waste. Resour. Conserv. Recycl. 142, 257–266.
  • PRESTON, J.S., 1982. Solvent Extraction of Cobalt(II) and Nickel(II) by a Quaternary Ammonium Thiocyanate. Sep Sci Technol 17, 1697–1718.
  • SARANGI, K., PADHAN, E., SARMA, P.V.R.B., PARK, K.H., DAS, R.P., 2006. Removal/recovery of hydrochloric acid using Alamine 336, Aliquat 336, TBP and Cyanex 923. Hydrometallurgy 84(3-4), 125–129.
  • SINGH, R., KHWAJA, A.R., GUPTA, B., TANDON, S.N., 1999. Extraction and separation of nickel(II) using bis (2,4,4-trimethylpentyl) dithiophosphinic acid (cyanex 301) and its recovery from spent catalyst and electroplating bath residue. Solvent Extr. Ion Exch. 17, 367-390.
  • SUZUKI, T., NAKAMURA, T., INOUE, Y., NIINAE, M., SHIBATA, J., 2012. A hydrometallurgical process for the separation of aluminum, cobalt, copper and lithium in acidic sulfate media. Sep. Purif. Technol 98, 396–401.
  • TAIT, B.K., 1993. Cobalt-nickel separation: the extraction of cobalt (II) and nickel (II) by Cyanex 301, Cyanex 302 and Cyanex 272. Hydrometallurgy 32, 365-372.
  • TORKAMAN, R., ASADOLLAHZADEH, M., TORAB-MOSTAEDI, M., GHANADI MARAGHEH, M., 2017. Recovery of cobalt from spent lithium ion batteries by using acidic and basic extractants in solvent extraction process. Sep. Purif. Technol 186, 318–325.
  • TRAN, T.T., AZRA, N., IQBAL, M., LEE, M.S., 2020. Synthesis of succinimide based ionic liquids and comparison of extraction behavior of Co(II) and Ni(II) with bi-functional ionic liquids synthesized by Aliquat336 and organophosphorus acids. Sep. Purif. Technol 238, 116496.
  • TRAN, T.T., LEE, M.S., 2020. Interactions between ionic liquid (ALi-CY) and TBP and their use for extraction of Co(II) and Ni(II) in hydrometallurgy. Korean J. Met. Mater. 58, 1-10.
  • WANG, H., FRIEDRICH, B., 2015. Development of a Highly Efficient Hydrometallurgical Recycling Process for Automotive Li–Ion Batteries. J. Sustain. Metall. 1, 168–178.
  • WANG, Y., LIU, B., LI, Q., CARTMELL, S., FERRARA, S., DENG, Z.D., XIAO, J., 2015. Lithium and lithium ion batteries for applications in microelectronic devices: A review. J. Power Sources 286, 330–345.
  • WIESZCZYCKA, K., TOMCZYK, W., 2011. Degradation of organothiophosphorous extractant Cyanex 301. J. Hazard. Mater. 192, 530–537.
  • XIN, Y., GUO, X., CHEN, S., WANG, J., WU, F., XING, B., 2016. Bioleaching of valuable metals li, co, ni and mn from spent electric vehicle li-ion batteries for the purpose of recovery. J. Clean. Prod. 116, 249-258.
  • XU, J., THOMAS, H.R., FRANCIS, R.W., LUM, K.R., WANG, J., LIANG, B., 2008. A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 177, 512–527.
  • YAO, Y., ZHU, M., ZHAO, Z., TONG, B., FAN, Y., HUA, Z., 2018. Hydrometallurgical Processes for Recycling Spent Lithium-Ion Batteries: A Critical Review. ACS Sustain. Chem. Eng 6, 13611–13627.
  • ZHAO, J.M., SHEN, X.Y., DENG, F.L., WANG, F.C., WU, Y., LIU, H.Z., 2011. Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex272 and PC-88A. Sep. Purif. Technol 78, 345–351.
  • ZHENG, X., ZHU, Z., LIN, X., ZHANG, Y., HE, Y., CAO, H., SUN, J., 2018. A Mini-Review on Metal Recycling from Spent Lithium Ion Batteries. Engineering 4, 361–370.
  • ZHU, S., HE, W., LI, G., ZHOU, X., ZHANG, X., HUANG, J., 2012. Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation. Trans. Nonferrous Met. Soc 22(9), 2274–2281.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-572446fb-f292-4d36-ad24-36b7c8b85811
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.