Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Using the results in [12] where a construction of the Dunkl intertwining operator for a large set of regular parameter functions is provided, we establish an integral expression for the Dunkl kernel in the context of the dihedral group Dn with constant parameter function k ∈ ℂ and arbitrary order n ≥ 2. Our main tool is a differential system that leads to the explicit expression of the Dunkl kernel whenever an appropriate solution of it is obtained. In particular, an explicit expression of the Dunkl kernel Ek(x, y) is given when one of its argument x or y is invariant under the action of any reflection in the dihedral group. We obtain also a generating series for the homogeneous components Km(x, y), m ∈ ℤ+, of the Dunkl kernel and provide new sharp estimates for the Dunkl kernel in the large context k ∈ ℂ, n ≥ 2 and −2nk ≠ 1, 2, 3, . . . .
Wydawca
Czasopismo
Rocznik
Tom
Strony
73--84
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
- National School of Applied Sciences, Ibn Tofail University, 14000 Kenitra, Morocco
Bibliografia
- [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1966.
- [2] M. de Jeu, Paley-Wiener theorems for the Dunkl transform, Trans. Amer. Math. Soc. 358 (2006), no. 10, 4225-4250.
- [3] M. F. E. de Jeu, The Dunkl transform, Invent. Math. 113 (1993), no. 1, 147-162.
- [4] C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), no. 1, 167-183.
- [5] C. F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), no. 6, 1213-1227.
- [6] C. F. Dunkl, Hankel transforms associated to finite reflection groups, in: Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa 1991), Contemp. Math. 138, American Mathematical Society, Providence (1992), 123-138.
- [7] C. F. Dunkl, M. F. E. de Jeu and E. M. Opdam, Singular polynomials for finite reflection groups, Trans. Amer. Math. Soc. 346 (1994), no. 1, 237-256.
- [8] C. F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables, Encyclopedia Math. Appl. 81, Cambridge University Press, Cambridge, 2001.
- [9] C. F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables, 2nd ed., Encyclopedia Math. Appl. 155, Cambridge University Press, Cambridge, 2014.
- [10] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Stud. Adv. Math. 29, Cambridge University Press, Cambridge, 1990.
- [11] L. Lapointe and L. Vinet, Exact operator solution of the Calogero-Sutherland model, Comm. Math. Phys. 178 (1996), no. 2, 425-452.
- [12] M. Maslouhi and E. H. Youssfi, The Dunkl intertwining operator, J. Funct. Anal. 256 (2009), no. 8, 2697-2709.
- [13] M. Rösler, Positivity of Dunkl’s intertwining operator, Duke Math. J. 98 (1999), no. 3, 445-463.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5722c60e-4e82-4418-8489-01f827d9a18e