PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie egzoszkieletów w budownictwie

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Use of exoskeletons in construction
Konferencja
Konferencja Naukowo-Techniczna „Aktualne Problemy w Budownictwie Ogólnym i Inżynierii Przedsięwzięć Budowlanych – BUDIN 2025”, 12-15 maja 2025 r., Zagórze Śląskie
Języki publikacji
PL
Abstrakty
PL
Egzoszkielety to innowacyjne urządzenia, które wspierają pracowników budowlanych, zmniejszając obciążenia mięśniowo-szkieletowe oraz ryzyko urazów. Artykuł przedstawia przegląd dostępnych rozwiązań, badań nad ich skutecznością oraz przyszłych kierunków rozwoju tej technologii. Badania wykazały, że egzoszkielety mogą poprawiać ergonomię pracy, redukując wysiłek fizyczny i zmniejszając dolegliwości bólowe, zwłaszcza w dolnej części pleców oraz ramionach. Eksperymenty przeprowadzone zarówno w warunkach laboratoryjnych, jak i na terenach budowy potwierdzają ich pozytywny wpływ na zdrowie i wydajność pracowników. Jednocześnie zauważono pewne ograniczenia – niektóre egzoszkielety mogą powodować dyskomfort w klatce piersiowej lub zwiększać obciążenie poznawcze, co może wpływać na koncentrację i świadomość sytuacyjną.
EN
Exoskeletons are innovative devices that support construction workers by reducing musculoskeletal strain and the risk of injuries. This article provides an overview of available solutions, research on their effectiveness, and future directions for the development of this technology. Studies have shown that exoskeletons can improve workplace ergonomics by reducing physical effort and alleviating pain, particularly in the lower back and shoulders. Experiments conducted in both laboratory settings and construction sites confirm their positive impact on workers’ health and productivity. However, some limitations have been noted – certain exoskeletons may cause chest discomfort or increase cognitive load, potentially affecting concentration and situational awareness.
Czasopismo
Rocznik
Strony
237--239
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
  • Wydział Budownictwa Lądowego i Wodnego, Politechnika Wrocławska
Bibliografia
  • [1] Okunola A., Akanmu A., Jebelli H., Fall risk assessment of active backsupport exoskeleton-use for construction work using foot plantar pressure distribution, Advanced Engineering Informatics, tom 62, 10/2024p. str. 102626, doi: 10.1016/j.aei.2024.102626
  • [2] Okunola A., Afolabi A., Akanmu A., Jebelli H., Simikins S., Facilitators and barriers to the adoption of active back-support exoskeletons in the construction industry, J Safety Res, tom 90, 9/2024, str. 402-415, doi: 10.1016/j.jsr.2024.05.010
  • [3] Al-Khiami M. I., Lindhard S. M., Wandahl S., Charting the Exoskeleton Industry: A Comprehensive Insight into Dynamics and Trends, IOP Conference Series Earth Environmental Science, tom 1389, 1/2024, str. 012014, doi: 10.1088/1755-1315/1389/1/012014
  • [4] Alwasel A., Elrayes K., Abdel-Rahman E., Haas C., Reducing shoulder injuries among construction workers, Proceedings of the 29th International Symposium of Automation and Robotics in Construction, ISARC, 2012, doi: 10.4017/gt.2012.11.02.241.00
  • [5] Linner T., Pan M., Pan W., Taghavi M., Pan W., Bock T., Identification of usage scenarios for robotic exoskeletons in the context of the Hong Kong construction industry, ISARC, 2018, 35th International Symposium on Automation and Robotics in Construction and International AEC/FM Hackathon: The Future of Building Things, 2018, doi: 10.22260/isarc2018/0006
  • [6] Golabchi A., Miller L., Rouhani H., Tavakoli M., Impact of Passive Back-Support Exoskeletons on Manual Material Handling Postures in Construction, Proceedings of the International Symposium on Automation and Robotics in Construction, 1/2022, str. 359-366, doi: 10.22260/isarc2022/0050
  • [7] Capitani S. L., Bianchi M., Secciani N., Pagliai M., Meli E., Ridolfi A., Model-based mechanical design of a passive lower-limb exoskeleton for assisting workers in shotcrete projection, Meccanica, tom 56, 1/2021, str. 195-210, doi: 10.1007/s11012-020-01282-3
  • [8] Gonsalves N. J., Ogunseiju O. R., Akanmu A. A., Nnaji C. A., Assessment of a passive wearable robot for reducing low back dIsorders during rebar work, Journal of Information Technology in Construction, tom 26, 11/2021, str. 936-952, doi: 10.36680/J.ITCON.2021.050
  • [9] Gonsalves N. J., Khalid M., Akinniyi A., Ogunseiju O., Akanmu A., Subjective Evaluation of Passive Back-Support Wearable Robot for Simulated Rebar Work, Proceedings of the International Symposium on Automation and Robotics in Construction 1/2022, str. 430-436, doi: 10.22260/isarc2022/0059
  • [10] Gonsalves N. J., Khalid M., Akinniyi A., Akanmu A., Industry Perspectives of the Potential of Wearable Robot for Pipe Installation Work, Proceedings of the International Symposium on Automation and Robotics in Construction 1/2022, str. 437-443, doi: 10.22260/isarc2022/0060
  • [11] Bennett S. T. et al., Usability and Biomechanical Testing of Passive Exoskeletons for Construction Workers: A Field-Based Pilot Study, Buildings 13(3)2023, doi: 10.3390/buildings13030822
  • [12] Gonsalves N., Akanmu A., Gao X., Agee P., Shojaei A., Industry Perception of the Suitability of Wearable Robot for Construction Work, Journal of Construction Engineering and Managment, tom 149, 5/2023, str. 04023017, doi: 10.1061/JCEMD4.COENG-12762
  • [13] Ojha A., Guo H., Jebelli H., Martin A., Akanmu A., Assessing the Impact of Active Back Support Exoskeletons on Muscular Activity during Construction Tasks: Insights from Physiological Sensing, Computing in Civil Engineering 2023: Resilience, Safety, and Sustainability – Selected Papers from the ASCE International Conference on Computing in Civil Engineering 2023, 1/2024, str. 340–347, doi: 10.1061/9780784485248.041
  • [14] Liu Y., Ojha A., Jebelli H., Vision-Based Ergonomic Risk Assessment of Back-Support Exoskeleton for Construction Workers in Material Handling Tasks, Computing in Civil Engineering 2023: Resilience, Safety, and Sustainability – Selected Papers from the ASCE International Conference on Computing in Civil Engineering 2023, 1/2024, str. 331-339, doi: 10.1061/9780784485248.040
  • [15] Breneman M., Ojha A., Jebelli H., Simkins S. J., Akanmu A., Breaking down barriers: A study of challenges to adopting powered exoskeletons in the US construction industry, Computing in Civil Engineering 2023: Data, Sensing, and Analytics – Selected Papers from the ASCE International Conference on Computing in Civil Engineering 2023, 1/2024, str. 763-770, doi: 10.1061/9780784485224.092
  • [16] Dunson-Todd M., Nik-Bakht M., Hammad A., Experimental Evaluation of Exoskeletons for Rebar Workers Using a Realistic Controlled Test, Proceedings of the International Symposium on Automation and Robotics in Construction, 1/2024str. 513-520, doi: 10.22260/ISARC2024/0067
  • [17] Musso M., Oliveira A. S., Bai S., Influence of an upper limb exoskeleton on muscle activity during various construction and manufacturing tasks, Appl Ergon, tom 114, 1/2024, str. 104158, doi: 10.1016/j.apergo.2023.104158
  • [18] Baltrusch S. J., Krause F., de Vries A. W., de Looze M. P., Arm-support exoskeleton reduces shoulder muscle activity in ceiling construction, Ergonomics, tom 67, 8/2024, str. 1051-1063, doi: 10.1080/00140139.2023.2280443
  • [19] Nnaji C., Ibrahim A., Okpala I., Semi-Active Exoskeletons for Forearm Muscle Strain Reduction, Computing in Civil Engineering 2023: Resilience, Safety, and Sustainability – Selected Papers from the ASCE International Conference on Computing in Civil Engineering 1/2024, str. 556-563, doi: 10.1061/9780784485248.067
  • [20] Mänttäri S., Rauttola A.-P., Halonen J., Karkulehto J., Säynäjäkangas P., Oksa J., Effects of upper-limb exoskeleton on muscle activity in tasks requiring arm elevation: Part II – In-field experiments in construction industry settings, Work, tom 79, 2/2024, str. 753-763, doi: 10.3233/WOR-230218
  • [21] Ibrahim A., Okpala I., Nnaji C., Akanmu A., Effects of using an active hand exoskeleton for drilling tasks: A pilot study, J Safety Res, tom 90, 9/2024, str. 381-391, doi: 10.1016/j.jsr.2024.05.004
  • [22] Du B. B. et al., Skilled Workers’ Perspectives on Utilizing a Passive Shoulder Exoskeleton in Construction, Applied Sciences 14(19)2024, str. 8971, doi: 10.3390/app14198971
  • [23] Seo H., Pooladvand S., Aslanli A., Hasanzadeh S., Esmaeili B., Cognitive Impact of Wearing an Exoskeleton on Hazard Identification Performance of Construction Workers, Computing in Civil Engineering 2023: Resilience, Safety, and Sustainability – Selected Papers from the ASCE International Conference on Computing in Civil Engineering 2023, 1/2024, str. 357-365, doi: 10.1061/9780784485248.043
  • [24] Liu Y., Gautam Y., Ojha A., Shayesteh S., Jebelli H., Studying the Effects of Back-Support Exoskeletons on Workers’ Cognitive Load during Material Handling Tasks, Construction Research Congress 2024, CRC 2024, 1/2024, str. 659-669, doi: 10.1061/9780784485262.067
  • [25] Akanmu A., Okunola A., Jebelli H., Ammar A., Afolabi A., Cognitive load assessment of active back-support exoskeletons in construction: A case study on construction framing, Advanced Engineering Informatics, tom 62, 10/2024, str. 102905, doi: 10.1016/j.aei.2024.102905
  • [26] Afolabi A., Yusuf A., Akanmu A., Predicting mental workload of using exoskeletons for construction work: a deep learning approach, Journal of Information Technology in Construction, tom 30, 1/2025, str. 1-21, doi: 10.36680/j.itcon.2025.001
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-571f46b2-97ae-49f8-8d9f-03c91da2653f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.