Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We propose a new subexponential time integer factoring algorithm called SQUFOF2, based on ideas of D. Shanks and R. de Vogelaere. It begins by using a sieve like that in the multiple polynomial Quadratic Sieve to construct a square value of a binary quadratic form. It uses this value to produce a square form. Then it factors the integer N as the original SQUFOF does by taking an inverse square root and following a nonprincipal cycle to a symmetry point. This marriage with the Quadratic Sieve transforms SQUFOF from an O(N1/4) algorithm into one with subexponential time. On the way we prove new facts about the infrastructure distance, which is used in the time complexity analysis.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
13--34
Opis fizyczny
Bibliogr. 22 poz., tab.
Twórcy
autor
- Department of Mathematics, Purdue University West Lafayette, IN 47907-2067, USA
autor
- Center for Education and Research in Information Assurance and Security
- Department of Computer Science ,Purdue University West Lafayette, IN 47907-1398, USA
Bibliografia
- [1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, New York, 1976.
- [2] E. Bach and J. Shallit, Algorithmic Number Theory, Vol. I: Efficient Algorithms, MIT Press, Cambridge, MA, 1996.
- [3] D. A. Buell, Binary Quadratic Forms: Classical Theory and Modern Computations, Springer, Berlin, 1989.
- [4] E. R. Canfield, P. Erdős, and C. Pomerance, On a problem of Oppenheim concerning “factorisatio numerorum”, J. Number Theory 17 (1983), 1-28.
- [5] H. Cohen, A Course in Computational Algebraic Number Theory, Springer, New York, 1996.
- [6] D. Coppersmith and S. Winograd, On the asymptotic complexity of matrix multiplication, SIAM J. Comput. 11 (1982), 472-492.
- [7] R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, New York, 2001.
- [8] K. Dickman, On the frequency of numbers containing prime factors of a certain relative magnitude, Ark. Mat. Astronom. Fys. A 22 (1930), no. 10, 14 pp.
- [9] C. F. Gauss, Disquisitiones Arithmeticae, Yale Univ. Press, New Haven, CT, 1966 (English ed.).
- [10] J. E. Gower and S. S. Wagstaff, Jr., Square form factorization, Math. Comp. 77 (2008), 551-588.
- [11] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Clarendon Press, Oxford, 1979.
- [12] D. E. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, 2nd ed., Addison-Wesley, Reading, MA, 1981.
- [13] D. E. Knuth and L. Trabb Pardo, Analysis of a simple factorization algorithm, Theoret. Computer Sci. 3 (1976), 321-348.
- [14] H. W. Lenstra, Jr., On the calculation of regulators and class numbers of quadratic fields, in: J. V. Armitage (ed.), Journées Arithmétiques, 1980, London Math. Soc. Lecture Note Ser. 56, Cambridge Univ. Press, Cambridge, 1982, 123-150.
- [15] H. W. Lenstra, Jr., and C. Pomerance, A rigorous time bound for factoring integers, J. Amer. Math. Soc. 5 (1992), 483-516.
- [16] C. Pomerance, Analysis and comparison of some integer factoring algorithms, in: H. W. Lenstra, Jr., and R. Tijdeman (eds.), Computational Methods in Number Theory, Part 1, Math. Centre Tracts 154, CWI, Amsterdam, 1982, 89-139.
- [17] P. Pritchard, A sublinear additive sieve for finding prime numbers, Comm. ACM 24 (1981), 18-23.
- [18] D. Shanks, The infrastructure of a real quadratic field and its applications, in: Proc. 1972 Number Theory Conf. (Boulder, CO), Univ. of Colorado, Boulder, CO, 1972, 217-224.
- [19] D. Shanks, Square forms factorization, lecture, before 1975.
- [20] D. Shanks, SQUFOF (an unfinished manuscript), available at https://homes.cerias.purdue.edu/~ssw/shanks.pdf.
- [21] A. J. van der Poorten, A note on NUCOMP, Math. Comp. 72 (2003), 1935-1946.
- [22] S. S. Wagstaff, Jr., The Joy of Factoring, Student Math. Library 68, Amer. Math. Soc., Providence, RI, 2013.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-571de1ca-ad86-4f0c-bd95-9f81e7d372b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.