PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Advantages of combined GNSS processing involving a limited number of visible satellites

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Millimetre-precise GNSS measurements may only be achieved by static relative (differential) positioning using a double-frequency receiver. This accuracy level is needed to address certain surveying and civil engineering issues. Relative measurements are performed using a single- or multi-network reference station, whose accuracy depends on a number of factors, such as the distance to the reference station, the session duration, the number of visible satellites, or ephemeris and clock errors. In this work, the author analyses the accuracy of static GNSS measurements according to the number of visible satellites, based on different minimal elevation cut-off angles. Each session was divided into three modes: GPS, GLONASS and hybrid GNSS (GPS+GLONASS). The final results were compared with the corresponding daily EPN solution at the observational epoch in order to determine their accuracy.
Słowa kluczowe
EN
geodesy   GPS   GLONASS   GNSS   EPN  
PL
geodezja   GPS   GLONASS   GNSS   EPN  
Rocznik
Tom
Strony
89--99
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, 30 Mickiewicza Street, 30-059 Krakow
Bibliografia
  • 1. Alcay S., C. Inal, C. Yigit, M. Yetkin. 2012. “Comparing GLONASS-only with GPS-only and hybrid positioning in various length of baselines”. Acta Geodaetica et Geophysica Hungarica 47(1): 1-12. DOI: https://doi.org/10.1556/AGeod.47.2012.1.1
  • 2. Alcay S., C.O. Yigit. 2016. “Network based performance of GPS-only and combined GPS/GLONASS positioning under different sky view conditions”. Acta Geodaetica et Geophysica. DOI: https://doi.org/10.1007/s40328-016-0173-5.
  • 3. Angrisano A., S. Gaglione, C. Gioia. 2013. “Performance assessment of GPS/GLONASS single point positioning in an urban environment”. Acta Geodaetica et Geophysica 48(2): 149-161. DOI: https://doi.org/10.1007/s40328-012-0010-4.
  • 4. Cai C., Y. Gao. 2012. “Modeling and assessment of combined GPS/GLONASS precise point positioning”. GPS Solutions 17(2): 223-236. DOI: https://doi.org/10.1007/s10291- 012-0273-9.
  • 5. Charles J. 2010. An Introduction to GNSS. NovAtel Inc.
  • 6. Dach R., P. Walser. 2013. Bernese GNSS Software Version 5.2.
  • 7. Garcia J.G., P.I. Mercader, C.H. Muravchik. 2005. “Use of carrier phase double differences”. Latino American Applied Research 35: 115-120.
  • 8. Guo F., X. Li, X. Zhang, J. Wang. 2017. “Assessment of precise orbit and clock products for Galileo, BeiDou, and QZSS from IGS Multi-GNSS Experiment (MGEX)”. GPS Solutions 21(1): 279-290. DOI: https://doi.org/10.1007/s10291-016-0523-3.
  • 9. Hofmann-Wellenhof B., H. Lichtenegger, E. Wasle. 2008. GNSS – Global Navigation Satellite Systems. Vienna: Springer Vienna. DOI: https://doi.org/10.1007/978-3-211- 73017-1.
  • 10. Kaplan E., C. Hegarty. 1997. Understanding GPS. Norwood, MA: Artech House.
  • 11. Kleusberg A. 1990. “Comparing GPS and GLONASS”. GPS World 1(6): 52-54.
  • 12. Komac M., R. Holley, P. Mahapatra, H. van der Marel, M. Bavec. 2015. “Coupling of GPS/GNSS and radar interferometric data for a 3D surface displacement monitoring of landslides”. Landslides 12(2): 241-257. DOI: https://doi.org/10.1007/s10346-014-0482- 0.
  • 13. Li G., J. Wu, C. Zhao, Y. Tian. 2017. “Double differencing within GNSS constellations”. GPS Solutions. DOI: https://doi.org/10.1007/s10291-017-0599-4.
  • 14. Naesset E., T. Bjerke, O. Bvstedal, L. Ryan. 2000. “Contributions of differential GPS and GLONASS observations to point accuracy under forest canopies”. Photogrammetric Engineering & Remote Sensing: 403-407.
  • 15. Przestrzelski P., M. Bakuła, R. Galas. 2016. “The integrated use of GPS/GLONASS observations in network code differential positioning”. GPS Solutions: 1-12. DOI: https://doi.org/10.1007/s10291-016-0552-y.
  • 16. Rajner M., T. Liwosz. 2011. “Studies of crustal deformation due to hydrological loading on GPS height estimates”. Geodesy and Cartography 60(2): 135-144. DOI: https://doi.org/10.2478/v10277-012-0012-y.
  • 17. Roh T.H., D.J. Seo, J.C. Lee. 2003. “An accuracy analysis for horizontal alignment of road by the kinematic GPS/GLONASS combination”. KSCE Journal of Civil Engineering 7(1): 73-79. DOI: https://doi.org/10.1007/BF02841990.
  • 18. Schmid R., M. Rothacher, D. Thaller, P. Steigenberger. 2005. “Absolute phase center corrections of satellite and receiver antennas”. GPS Solutions 9(4): 283-293. DOI: https://doi.org/10.1007/s10291-005-0134-x.
  • 19. Söderholm S., M.Z.H. Bhuiyan, S. Thombre, L. Ruotsalainen, H. Kuusniemi. 2016. “A multi-GNSS software-defined receiver: design, implementation, and performance benefits”. Annals of Telecommunications 71(7-8): 399-410. DOI: https://doi.org/10.1007/s12243-016-0518-7.
  • 20. Witchayangkoon B. 2000. Elements of GPS Precise Point Positioning. PhD thesis.
  • 21. Xu G. 2003. GPS: Theory, Algorithms and Applications. Berlin, Heidelberg, New York: Springer.
  • 22. Yeh T.K., C. Hwang, G. Xu, C.S. Wang, C.C. Lee. 2009. “Determination of global positioning system (GPS) receiver clock errors: impact on positioning accuracy”. Measurement Science and Technology 20(7): 75-105. DOI: https://doi.org/10.1088/0957-0233/20/7/075105
  • 23. Yongjun Z. 2002. “Combined GPS/GLONASS data processing”. Geo-spatial Information Science 5(4): 32-36. DOI: https://doi.org/10.1007/BF02826472.
  • 24. Zheng Y., G. Nie, R. Fang, Q. Yin, W. Yi, J. Liu. 2012. “Investigation of GLONASS performance in differential positioning”. Earth Science Informatics 5(3-4): 189-199. DOI: https://doi.org/10.1007/s12145-012-0108-9
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-571d995b-ea9c-4bd4-8f3f-a73df4548c0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.