PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phase, microstructure and microwave dielectric properties of A-site deficient (La, Nd) 2/3TiO3 perovskite ceramics

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
(La, Nd)2/3TiO3 ceramics were prepared through a conventional solid state mixed oxide route. For phase and microstructure analysis, XRD and SEM were used, respectively. Microwave dielectric properties were measured using a network analyzer. XRD patterns revealed the formation of the parent (La, Nd)2/3TiO3 phase along with (La, Nd)4Ti9O24 as a secondary phase. The microstructure consisted of rectangular and needle shaped grains, which decreased in size from 4 μ m to 2 μm with an increase in sintering temperature from 1300 °C to 1350 °C. Decrease in grain size caused an increase in density of the samples from 4.81 g/cm3 to 5.17 g/cm3. Microwave dielectric properties of the samples calcined and sintered in air atmosphere were εr = 40.35, Q × f = 3499 GHz and τ f = 0 ppm/°C, whereas for a sample calcined in nitrogen and sintered in air they were εr = 40.18, Q × f = 4077 GHz and τ f = +4.9 ppm/°C, respectively.
Wydawca
Rocznik
Strony
126--130
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Materials Research Laboratory, Institute of Physics and Electronics, University of Peshawar, 25120, Pakistan
  • School of Earth and Space Sciences, Peking University, Beijing 100871, China
autor
  • Materials Research Laboratory, Institute of Physics and Electronics, University of Peshawar, 25120, Pakistan
autor
  • School of Earth and Space Sciences, Peking University, Beijing 100871, China
autor
  • 2School of Earth and Space Sciences, Peking University, Beijing 100871, China
autor
  • School of Earth and Space Sciences, Peking University, Beijing 100871, China
Bibliografia
  • [1] KIM I.S., JUNG W.H., INAGUMA Y., NAKAMURA T., ITOH M., Mater. Res. Bull., 30 (1995), 307.
  • [2] IQBAL Y., MANAN A., J. Mater. Sci.-Mater. El., 23 (2012), 536.
  • [3] IQBAL Y., MANAN A., REANEY I.M., Mater. Res. Bull., 46, (2011), 1092.
  • [4] AZOUGH F., FREER R., SCHAFFER B., J. Am. Ceram. Soc., 93 (2010), 1237.
  • [5] KONG Q.D., BIAN J.J., WANG L., GUO Q.H., LIANG Z., Ferroelectrics, 407 (2010), 23.
  • [6] REANEY I.N., IDDLES D., J. Am. Ceram. Soc., 89 (2006), 2063.
  • [7] BIAN J.J., LI Y.Z., YUAN L.L., Mater. Chem. Phys., 116 (2009), 102.
  • [8] ZHANG Z., LUMPKIN G.R., HOWARD C.J., KNIGHT K.S., WHITTLE K.R., OSAKA K., J. Solid State Chem., 180 (2007), 1083.
  • [9] YOSHIOKA H., J. Am. Ceram. Soc., 85 (2002), 1339.
  • [10] YOSHIOKA H., KIKKAWA S., J. Mater. Chem., 8 (1998), 1821.
  • [11] BIAN J.J., LI Y.Z., Mater. Chem. Phys., 122 (2010), 617.
  • [12] BIAN J.J., SONG G.X., YAN K., Ceram. Int., 34 (2008), 893.
  • [13] HUANG C.L., CHIANG K.H., HUANG C.Y., Mater. Chem. Phys., 90 (2005), 373.
  • [14] SHEEN J., Meas. Sci. Technol., 20 (2009), 042001.
  • [15] YADAV B.C., SINGH M., SRIVASTAVA R., DWIVEDI C.D., Int. J. Green. Nanotechnol., 3 (2011), 98.
  • [16] SHANNON R.D., J. Appl. Phys., 73 (1993), 347.
  • [17] GUO Q.H., BIAN J.J., WANG L., J. Am. Ceram. Soc., 94 (2011), 172.
  • [18] HUANG C.L., TSAI J.T., CHEN Y.B., Mater. Res. Bull., 36 (2001), 547.
  • [19] LIO C.L., LIAN K.H., LIN S.T., J. Ceram. Process. Res., 9 (2008), 562.
  • [20] PARK H.S., YOON K.H., KIM E.S., J. Am. Ceram. Soc., 84 (2001), 99.
  • [21] HANNAY J.H., Eur. J. Phys., 4 (1983), 141.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-571bc643-e486-43dd-bb98-5e2689a5ea21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.