PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ability of black-box optimisation to efficiently perform simulation studies in power engineering

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the potential of the so-called black-box optimisation (BBO) to increase the efficiency of simulation studies in power engineering is evaluated. Three algorithms (“Multilevel Coordinate Search” (MCS) and “Stable Noisy Optimization by Branch and Fit” (SNOBFIT) by Huyer and Neumaier and “blackbox: A Procedure for Parallel Optimization of Expensive Black-box Functions” (blackbox) by Knysh and Korkolis) are implemented in MATLAB and compared for solving two use cases: the analysis of the maximum rotational speed of a gas turbine after a load rejection and the identification of transfer function parameters by measurements. The first use case has a high computational cost, whereas the second use case is computationally cheap. For each run of the algorithms, the accuracy of the found solution and the number of simulations or function evaluations needed to determine the optimum and the overall runtime are used to identify the potential of the algorithms in comparison to currently used methods. All methods provide solutions for potential optima that are at least 99.8% accurate compared to the reference methods. The number of evaluations of the objective functions differs significantly but cannot be directly compared as only the SNOBFIT algorithm does stop when the found solution does not improve further, whereas the other algorithms use a predefined number of function evaluations. Therefore, SNOBFIT has the shortest runtime for both examples. For computationally expensive simulations, it is shown that parallelisation of the function evaluations (SNOBFIT and blackbox) and quantisation of the input variables (SNOBFIT) are essential for the algorithmic performance. For the gas turbine overspeed analysis, only SNOBFIT can compete with the reference procedure concerning the runtime. Further studies will have to investigate whether the quantisation of input variables can be applied to other algorithms and whether the BBO algorithms can outperform the reference methods for problems with a higher dimensionality.
Rocznik
Strony
292--302
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • University of Applied Sciences and Arts Hannover, Faculty I – Electrical Engineering and Information Technology, Ricklinger Stadtweg 120, 30459 Hannover, Germany
  • University of Applied Sciences and Arts Hannover, Faculty I – Electrical Engineering and Information Technology, Ricklinger Stadtweg 120, 30459 Hannover, Germany
  • Siemens Energy Gas and Power Combustion Systems, Mellinghofer Str. 55, 45473 Mülheim a.d. Ruhr, Germany
autor
  • Leibniz University Hannover, Institute of Electric Power Systems, Electric Power Engineering Section, Appelstraße 9a, 30167 Hannover, Germany
Bibliografia
  • 1. Kimiaei M, Neumaier A. Efficient Global Unconstrained Black Box Optimization. Mathematical Programming Optimization. 2022;14: 365-414. https://doi.org/10.1007/s12532-021-00215-9
  • 2. Custódio AL, Scheinberg K, Vicente LN. Methodologies and Software for Derivative-free Optimization. In Advances and Trends in Optimization with Engineering Applications (SIAM). 2017: 495-506. https:///doi.org/10.1137/1.9781611974683.ch37
  • 3. Rios LM, Sahinidis NV. Derivative-free optimization: a review of algorithms and comparison of software implementations. Journal of Global Optimization. 2013;56: 1247-1293. https://doi.org/10.1007/s10898-012-9951-y.
  • 4. Larson J, Menickelly M, Wild SM. Derivative-free Optimization Methods. Acta Numerica. 2019;28: 287-404. https://doi.org/10.1017/S0962492919000060
  • 5. Amaran S et al. Simulation Optimization: A Review of Algorithms and Applications. Ann Oper Res. 2016;240: 351–380. https://doi.org/10.1007/s10479-015-2019-x
  • 6. Ammeri A, Hachicha W, Chabchoub H, Masmoudi F. A comprehensive literature review of mono-objective simulation optimization methods. Advances in Production Engineering & Management. 2011;6(4): 291–302.
  • 7. Walton S, Hassan O, Morgan K. Selected Engineering Applications of Gradient Free Optimisation Using Cuckoo Search and Proper Orthogonal Decomposition. Archives of Computational Methods in Engineering. 2013;20: 123-154. https://doi.org/10.1007/s11831-013-9083-7
  • 8. Yang XS, Deb S. Engineering Optimisation by Cuckoo Search. International Journal of Mathematical Modelling and Numerical Optimisation. 2010;1(4): 330–343. https://doi.org/10.48550/arXiv.1005.2908
  • 9. Xing XQ, Damodaran M. Assessment of Simultaneous Perturbation Stochastic Approximation Method for Wing Design Optimization. Journal of Aircraft. 2002;39: 379–381. https://doi.org/10.2514/2.2939
  • 10. Xing XQ, Damodaran M. Application of Simultaneous Perturbation Stochastic Approximation Method for Aerodynamic Shape Design Optimization. AIAA Journal. 2005;43(2): 284–294. https://doi.org/10.2514/1.9484
  • 11. Xing XQ, Damodaran M. Inverse Design of Transonic Airfoils Using Parallel Simultaneous Perturbation Stochastic Approximation. Journal of Aircraft. 2005;42(2): 568–570. http://dx.doi.org/10.2514/1.10876
  • 12. Kothandaraman G, Rotea MA. Simultaneous-Perturbation-Stochastic-Approximation Algorithm for Parachute Parameter Estimation. Journal of Aircraft. 2005;42(5): 1229–1235. http://dx.doi.org/10.2514/1.11721
  • 13. Prakash P et al. Design Optimization of a Robust Sleeve Antenna for Hepatic Microwave Ablation. Physics in Medicine and Biology. 2008;53: 1057–1069. https://doi.org/10.1088/0031-9155/53/4/016
  • 14. Li Y. A Simulation-based Evolutionary Approach to LNA Circuit Design Optimization. Applied Mathematics and Computation. 2009; 209(1): 57–67. http://dx.doi.org/10.1016/j.amc.2008.06.015
  • 15. Radac MB et al. Application of IFT and SPSA to Servo System Control. IEEE Transactions on Neural Networks. 2011;22(12): 2363–2375. https://doi.org/10.1109/tnn.2011.2173804
  • 16. Ernst D et al. The Cross-Entropy Method for Power System Combinatorial Optimization Problems. Power Tech. IEEE. 2007: 1290–1295. https://doi.org/10.1109/PCT.2007.4538502
  • 17. Kowalczyk Ł, Elsner W, Niegodajew P. The Application of Non-Gradient Optimization Methods to New Concept of Power Plant. 6th IC-EpsMsO; 2015 Jul 8-11; Athens.
  • 18. Lu S. Dynamic modelling and simulation of power plant systems. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 1999;213(1): 7-22. https://doi.org/10.1243/0957650991537392
  • 19. Huan J et al. The Application of Digital Twin on Power Industry. IOP Conf. Series: Earth and Environmental Science. 2021;647. https://doi.org/10.1088/1755-1315/647/1/012015
  • 20. Huyer W, Neumaier A. Global Optimization by Multilevel Coordinate Search. Journal of Global Optimization. 1999;14(2): 331-355. https://doi.org/10.1023/A:1008382309369
  • 21. Huyer W, Neumaier A. SNOBFIT - Stable noisy optimization by branch and fit. ACM Transactions on Mathematical Software. 2008; 35(2): Article No.: 9, 1-25. https://doi.org/10.1145/1377612.1377613
  • 22. Knysh P, Korkolis Y. blackbox: A procedure for parallel optimization of expensive black-box functions. arXiv (cs.MS). preprint submitted 2016, https://doi.org/10.48550/arXiv.1605.00998
  • 23. Knysh P. blackbox: A Python module for parallel optimization of expensive black-box functions [Internet]. [place unknown]; [publisher unknown]; 2016 Feb 19 [updated 2022 Sep 5; cited 2021 Oct 17]. Available from: https://github.com/paulknysh/blackbox
  • 24. Roberts M. Extreme Learning. The Unreasonable Effectiveness of Quasirandom Sequences [Internet]. [place unknown]; [publisher unknown]; 2018 Apr 25 [cited 2022 June 2]. Available from: http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/
  • 25. Regis RG, Shoemaker CA. Constrained Global Optimization of Expensive Black Box Functions Using Radial Basis Functions. Journal of Global Optimization. 2005;31: 153-171. https://doi.org/10.1007/s10898-004-0570-0
  • 26. Najko32. MCS algorithm [Internet]. [place unknown]; [publischer unknown]; 2018 August 6 [cited 2023 February 9]. Available from: https://commons.wikimedia.org/wiki/File:MCS_algorithm.gif
  • 27. Nelder JA, Mead R. A Simplex Method for Function Minimization. The Computer Journal. 1965;7: 308-313. https://doi.org/10.1093/comjnl/7.4.308
  • 28. Winfield D. Function Minimization by Interpolating in a Data Table. IMA Journal of Applied Mathematics. 1973;12: 339-347. https://doi.org/10.1093/imamat/12.3.339
  • 29. Holland JH. Genetic Algorithms and Adaptation. Adaptive Control for III-Defined Systems. 1984: 317-333. https://doi.org/10.1007/978-1-4684-8941-5_21
  • 30. Sacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and Analysis of Computer Experiments. Statistical Science. 1989;4: 409-423. https://doi.org/10.1214/ss/1177012413
  • 31. Jung I et al. Computational Fluid Dynamics Based Optimal Design of Guiding Channel Geometry in U-Type Coolant Layer Manifold of Large-Scale Microchannel Fischer–Tropsch Reactor. Ind. Eng. Chem. Res. 2016;55: 505–515. https://doi.org/10.1021/acs.iecr.5b03313
  • 32. Hemmat Esfe M, Hajmohammad M, Moradi R, Abbasian Arani AA. Multi-objective optimization of cost and thermal performance of double walled carbon nanotubes/water nanofluids by NSGA-II using response surface method. Applied Thermal Engineering. 2017;112: 1648–1657. https://doi.org/10.1016/j.applthermaleng.2016.10.129
  • 33. Abdollahi A, Shams M. Optimization of heat transfer enhancement of nanofluid in a channel with winglet vortex generator. Applied Thermal Engineering. 2015;91: 1116–1126. https://doi.org/10.1016/j.applthermaleng.2015.08.066
  • 34. Arora A, Bajaj I, Iyer SS, Hasan MMF. Optimal synthesis of periodic sorption enhanced reaction processes with application to hydrogen production. Computers & Chemical Engineering. (2018);115: 89–111.https://doi.org/10.1016/j.compchemeng.2018.04.004
  • 35. Iyer SS, Bajaj I, Balasubramanian P, Hasan MMF. Integrated Carbon Capture and Conversion To Produce Syngas: Novel Process Design, Intensification, and Optimization. Industrial & Engineering Chemistry Research. (2017);56(30): 8622–8648.
  • 36. https://doi.org/10.1021/acs.iecr.7b01688
  • 37. Liu J, Ploskas N, Sahinidis NV. Tuning BARON using derivative-free optimization algorithms. Journal of Global Optimization. 2019;74(4): 611–637. https://doi.org/10.1007/s10898-018-0640-3.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-571a3395-9ace-47cf-8f9b-1d6d3a516f74
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.