PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A meshless method for subsonic stall flutter analysis of turbomachinery 3D blade cascade

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The analysis of subsonic stall flutter in turbomachinery blade cascade is carried out using a medium-fidelity reduced-order aeroelastic numerical model. The model is a type of field mesh-free approach and based on a hybrid boundary element method. The medium-fidelity flow solver is developed on the principle of viscous-inviscid two-way weak-coupling approach. The hybrid flow solver is employed to model separated flow and stall flutter in the 3D blade cascade at subsonic speed. The aerodynamic damping coefficient w.r.t. inter blade phase angle in traveling-wave mode is estimated along with other parameters. The same stability parameter is used to analyze the cascade flutter resistance regime. The estimated results are validated against experimental measurements as well as Navier-Stokes based high fidelity CFD model. The simulated results show good agreement with experimental data. Furthermore, the hybrid flow solver has managed to bring down the computational cost significantly as compared to mesh-based CFD models. Therefore, all the prime objectives of the research have been successfully achieved.
Rocznik
Strony
art. no. e139000
Opis fizyczny
Bibliogr. 28 poz., il., fot. tab.
Twórcy
  • Institute of Thermomechanics of the CAS, Prague, Czech Republic
  • Institute of Thermomechanics of the CAS, Prague, Czech Republic
  • Institute of Thermomechanics of the CAS, Prague, Czech Republic
Bibliografia
  • [1] “Nuclear power: 2 largest steam turbine ever made,” 2020, (Accessed: 2020-10-06). [Online]. Available: https://www.ge.com/news/reports.
  • [2] T. Rice, D. Bell, and G. Singh, “Identification of the stability margin between safe operation and the onset of blade flutter,” J. Turbomach., vol. 131, no. 1, 2009, doi: 10.1115/1.2812339.
  • [3] J. Kiciński, “The flutter effect in rotating machines,” Bull. Pol. Acad. Sci. Tech. Sci., pp. 195–207, 2004.
  • [4] M. Vahdati, N. Smith, and F. Zhao, “Influence of Intake on Fan Blade Flutter,” J. Turbomach., vol. 137, no. 8, 08 2015, doi: 10.1115/1.4029240.
  • [5] J.D. Jeffers and C.E. Meece Jr, “F100 fan stall flutter problem review and solution,” J. Aircr., vol. 12, no. 4, pp. 350–357, 1975, doi: 10.2514/3.44454.
  • [6] R. Rządkowski, V. Gnesin, and L. Kolodyzhnaya, “3d viscous flutter of 11th configuration blade row,” Adv. Vib. Eng., vol. 8, no. 3, pp. 213–228, 2009. [Online]. Available: https://www.elibrary.ru/item.asp?id=27911163.
  • [7] J.L. Hess, “Calculation of potential flow about arbitrary threedimensional lifting bodies,” Naval Air Systems Command, Department of the Navy, Final Technical Report MDC J5679-01, 1972. [Online]. Available: https://apps.dtic.mil/sti/citations/AD0755480.
  • [8] C.S. Prasad and L. Pešek, “Efficient prediction of classical flutter stability of turbomachinery blade using the boundary element type numerical method,” Eng. Anal. Boundary Elem., vol. 113, pp. 328–345, 2020, doi: 10.1016/j.enganabound.2020.01.013.
  • [9] C.S. Prasad, R. Kolman, and L. Pešek, “A cost effective approach for subsonic aeroelastic stability analysis of turbomachinery 3d blade cascade. A reduced order aeroelastic model numerical approach,” Nonlinear Dyn.:under-review, 2021, doi: 10.21203/rs.3.rs-252660/v1.
  • [10] V.A. Riziotis and S.G. Voutsinas, “Dynamic stall modelling on airfoils based on strong viscous-inviscid interaction coupling,” Int. J. Numer. Methods Fluids, vol. 56, pp. 185–208, 2008, doi: 10.1002/fld.1525.
  • [11] N.R. García, A. Cayron, and J.N. Sørensen, “Unsteady double wake model for the simulation of stalled airfoils,” J. Power Energy Eng., vol. 3, pp. 20–25, 2015. doi: 10.4236/jpee.2015.37004.
  • [12] A. Zanon, P. Giannattasio, and C.J. Simão Ferreira, “A vortex panel model for the simulation of the wake flow past a vertical axis wind turbine in dynamic stall,” Wind Energy, vol. 16, no. 5, pp. 661–680, 2013, doi: 10.1002/we.1515.
  • [13] C. Prasad, Q.-Z. Chen, O. Bruls, F. D’Ambrosio, and G. Dimitriadis, “Aeroservoelastic simulations for horizontal axis wind turbines,” Proc. Inst. Mech. Eng., Part A: J. Power Energy, vol. 231, no. 2, pp. 103–117, 2016, doi: 10.1177/0957650916678725.
  • [14] C. Prasad, Q.-Z. Chen, O. Bruls, F. D’Ambrosio, and G. Dimitriadis, “Advanced aeroservoelastic modeling for horizontal axis wind turbines,” in Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014, Porto, Portugal, July 2014, pp. 3097–3104.
  • [15] Z. Goraj, A. Frydrychewicz, R. Świtkiewicz, B. Hernik, J. Gadomski, T. Goetzendorf-Grabowski, M. Figat, S. Suchodolski, and W. Chajec, “High altitude long endurance unmanned aerial vehicle of a new generation – a design challenge for a low cost, reliable and high performance aircraft,” Bull. Pol. Acad. Sci. Tech. Sci., pp. 173–194, 2004.
  • [16] C.S. Prasad and L. Pešek, “Analysis of classical flutter in steam turbine blades using reduced order aeroelastic model,” in The 14th International Conference on Vibration Engineering and Technology of Machinery (VETOMAC XIV), Lisabon, Portugal, Sept 2018, pp. 150–156, doi: 10.1051/matecconf/201821115001.
  • [17] C.S. Prasad and L. Pešek, “Classical flutter study in turbomachinery cascade using boundary element method for incompressible flows,” in Advances in Mechanism and Machine Science, T. Uhl, Ed. Cham: Springer International Publishing, 2019, pp. 4055–4064, doi: 10.1007/978-3-030-20131-9_404.
  • [18] C.S. Prasad and L. Pešek, “Subsonic stall flutter analysis in 2d blade cascade using hybrid boundary element method,” in In Proceedings of the 11th International Conference on Structural Dynamics, EURODYN 2020, Athens, Greece, November 2020, pp. 213–224.
  • [19] J. Katz and A. Plotkin, Low-Speed Aerodynamics, 2nd ed. Cambridge University Press, 2001.
  • [20] T. Wang and F.N. Coton, “Numerical simulation of wind tunnel wall effects on wind turbine flows,” Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, vol. 3, no. 3, pp. 135–148, 2000, doi: 10.1002/we.35.
  • [21] D. Ashby and D. Sandlin, “Application of a low order panel method to complex three-dimensional internal flow problems,” NASA Contractor report 177424, Tech. Rep., 1986. [Online]. Available: https://ntrs.nasa.gov/citations/19860021529.
  • [22] C.S. Prasad and G. Dimitriadis, “Application of a 3d unsteady surface panel method with flow separation model to horizontal axis wind turbines,” J. Wind Eng. Ind. Aerodyn., vol. 166, pp. 74–89, 2017, doi: 10.1016/j.jweia.2017.04.005.
  • [23] A. Zanon, P. Giannattasio, and C.J. Simão Ferreira, “A vortex panel model for the simulation of the wake flow past a vertical axis wind turbine in dynamic stall,” Wind Energy, vol. 16, no. 5, pp. 661–680, 2013.
  • [24] Y. Hanamura, H. Tanaka, and K. Yamaguchi, “A simplified method to measure unsteady forces acting on the vibrating blades in cascade,” Bull. JSME, vol. 23, no. 180, pp. 880–887, 1980, doi: 10.1299/jsme1958.23.880.
  • [25] E.F. Crawley, “Measurements of aerodynamic damping on the mit transonic rotor,” Cambridge, Mass.: Gas Turbine & Plasma Dynamics Laboratory, Massachusetts Institute of Technology, Tech. Rep., 1981. [Online]. Available: http://hdl.handle.net/1721.1/104728.
  • [26] V. Tsymbalyuk and J. Linhart, “Corrections of aerodynamic loadings measurement on vibrating airfoils,” in XVII IMEKO World Congress, Dubrovnik, Croatian Metrology Society. Citeseer, 2003, pp. 358–361.
  • [27] 3D Viscous Flutter in Turbomachinery Cascade by Godunov-Kolgan Method, ser. Turbo Expo: Power for Land, Sea, and Air, vol. Volume 5: Marine; Microturbines and Small Turbomachinery; Oil and Gas Applications; Structures and Dynamics, Parts A and B, 05 2006, doi: 10.1115/GT2006-90157.
  • [28] R. Galbraith, M. Gracey, and E. Leith, “Summary of pressure data for thirteen aerofoils on the university of Glasgow’s aerofoil database,” GU Aero report-9221 University of Glasgow, 1992.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5714fc02-7368-4e55-8eb3-77cecaf90afa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.