PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of flotation processes by classical mathematical methods – a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Modelowanie procesu flotacji przy pomocy klasycznych metod matematycznych – przegląd
Języki publikacji
EN
Abstrakty
EN
Flotation process modelling is not a simple task, mostly because of the process complexity, i.e. the presence of a large number of variables that (to a lesser or a greater extent) affect the final outcome of the mineral particles separation based on the differences in their surface properties. The attempts toward the development of the quantitative predictive model that would fully describe the operation of an industrial flotation plant started in the middle of past century and it lasts to this day. This paper gives a review of published research activities directed toward the development of flotation models based on the classical mathematical rules. The description and systematization of classical flotation models were performed according to the available references, with emphasize exclusively given to the flotation process modelling, regardless of the model application in a certain control system. In accordance with the contemporary considerations, models were classified as the empirical, probabilistic, kinetic and population balance types. Each model type is presented through the aspects of flotation modelling at the macro and micro process levels.
PL
Modelowanie procesów flotacji nie jest zagadnieniem prostym, głównie z uwagi na skomplikowany charakter samego procesu, czyli znaczną liczbę zmiennych które, w mniejszym lub w większym stopniu, mają wpływ na końcowy wynik procesu separacji cząstek materiału wykorzystującego różnice w ich właściwościach powierzchniowych. Próby stworzenia ilościowego modelu predyktywnego który w sposób pełny opisywałby przemysłowe procesy flotacji podjęto w połowie ubiegłego wieku a badania trwają po dzień dzisiejszy. W artykule przedstawiono przegląd działalności badawczej podejmowanej w celu opracowania modelu procesu flotacji opartego o zasady matematyki klasycznej. Opisu i systematyki modeli flotacji dokonano w oparciu o dostępną literaturę przedmiotu, główny nacisk kładąc na te modele, które wykorzystywane były wyłącznie do analizy procesu flotacji, bez względu na możliwość ich zastosowania także w układach sterowania. Zgodnie z obecnymi założeniami, modele sklasyfikowano jako empiryczne, probabilistyczne, kinetyczne oraz modele równowagi populacji. Każdy model zaprezentowany jest w kontekście modelowania procesu flotacji, z uwzględnieniem skali mikro oraz makro.
Rocznik
Strony
905--919
Opis fizyczny
Bibliogr. 86 poz., rys.
Twórcy
autor
  • Mining and Metallurgy Institute Bor, Mineral Processing Department, Zeleni Bulevar 35, 19210 Bor, Serbia
  • University of Belgrade, Faculty of Mining and Geology, Department of Applied Computing and System Engineering, Djusina 7, 11000 Belgrade, Serbia
Bibliografia
  • [1] Ali S., 2007. Mathematical models for the efficiency of flotation process for North Waziristan copper. PhD Thesis, University of education Lahore, Pakistan, 167 p.
  • [2] Bakker C.W., Meyer C.J., Deglon D.A., 2010. The development of a cavern model for mechanical flotation cells. Minerals Engineering, 23, p. 968-972.
  • [3] Bloom F., Heindel T.J., 1997. Mathematical Modelling of the Flotation Deinking Process. Mathematical and Computer Modelling, Vol. 25, No. 5, p. 13-58.
  • [4] Brożek M., Młynarczykowska A., 2007. Analysis of kinetics models of batch Flotation. Physicochemical Problems of Mineral Processing (Fizykochemiczne Problemy Mineralurgii), Vol. 41, p. 51-65.
  • [5] Brożek M., Młynarczykowska A., 2012. The distribution of air bubble size in the pneumo-mechanical flotation machine. Archives of Mining Sciences, Vol. 57, No. 3, p. 729-740.
  • [6] Casali A., Gonzalez G., Agusto H., Vallebuona G., 2002. Dynamic simulator of a rougher flotation circuit for a copper sulphide ore. Minerals Engineering, 15, p. 253-262.
  • [7] Çilek E.C., 2002. Application of neural networks to predict locked cycle flotation test results. Minerals Engineering, 15, p. 1095-1104.
  • [8] Ćalić N., 1990. Teorijski osnovi pripreme mineralnih sirovina. Faculty of Mining and Geology, University of Belgrade, 496 p. (In Serbian).
  • [9] Deglon D.A., Sawyerr F., O’Connor C.T., 1999. A model to relate the flotation rate constant and the bubble surface area flux in mechanical flotation cells. Minerals Engineering, Vol. 12, No. 6, p. 599-608.
  • [10] Dehghani F., Ranjbar G., Rezai B., 2011. The Effect of the Shape of Silica Particles Ground by Ball Mill on their Flotation Kinetics. American Journal of Scientific Research, Iss. 29, p. 33-40.
  • [11] Drzymała J., 2007. Mineral Processing: Foundations of theory and practice of minerallurgy. Wroclaw University of Technology, 508 p.
  • [12] Duan J., Fornasiero D., Ralston J., 2003. Calculation of the flotation rate constant of chalcopyrite particles in an ore. International Journal of Mineral Processing, 72, p. 227-237.
  • [13] Faulkner B.P., 1966. Computer control improves metallurgy at Tennessee copper flotation. Plan Mining Engineering, Vol. 18, p. 53-57.
  • [14] Ferreira J.P., Loveday B.K., 2000. An improved model for simulation of flotation circuits. Minerals Engineering, Vol. 13, No. 14-15, p. 1441-1453.
  • [15] Fichera M.A., Chudacek M.W., 1992. Batch cell flotation models – A review. Minerals Engineering, Vol. 5, Iss. 1, p. 41-55.
  • [16] Garcia Zuñiga H., 1935. The efficiency obtained by flotation is an exponential function of time. Boletín Minero, Sociedad Nacional de Minería, Santiago, Chile, 47, p. 83-86.
  • [17] Gorain B.K., Franzidis J.-P., Manlapig E.V., 1999. The empirical prediction of bubble surface area flux in mechanical flotation cells from cell design and operating data. Minerals Engineering, Vol. 12, No. 3, p. 309-322.
  • [18] Harris C.C., 1978. Multiphase models of flotation machine behaviour. International Journal of Mineral Processing, Vol. 5, Iss. 2, p. 107-129.
  • [19] Harris M.C., Runge K.C., Whiten W.J., Morrison R.D., 2002. JKSimFloat as a practical tool for flotation process design and optimization. Mineral Processing Plant Design, Practice and Control, Vol. 1 (Edited by A.L. Mular, D.N. Halbe and D.J. Barrat), p. 461-478.
  • [20] Hay M.P., 2008. Optimising froth condition and recovery for a nickel ore, Minerals Engineering, 21, p. 861-872.
  • [21] Herbst J.A., Harris M.C., 2007. Modeling and simulation of industrial flotation processes. Froth Flotation: A Century of Innovation (Edited by M.C. Fuerstenau, G.J. Jameson, R.H. Yoon), Publisher: SME, p. 757-777.
  • [22] Herbst J.A., Flintoff B., 2012. Recent Advances in Modeling, Simulation, and Control of Mineral Processing Operations. In: Separation Technologies for Minerals, Coal, and Earth Resources (Edited by C.A. Young and G.H. Luttrell), Publisher: SME, p. 667-680.
  • [23] Hernáinz F., Calero M., 1996. Flotation rate of celestite and calcite. Chemical Engineering Science, Vol. 51, No. 1, p. 119-125.
  • [24] Hernáinz F., Calero M., 2001. Froth flotation: kinetic models based on chemical analogy. Chemical Engineering and Processing 40, p. 269-275.
  • [25] Hodouin D., 2011. Methods for automatic control, observation, and optimization in mineral processing plants. Journal of Process Control, 21, p. 211-225.
  • [26] Kalinowski K., Kaula R., 2013. Verification of flotation kinetics model for triangular distribution of density function of flotability of coal particles. Archives of Mining Sciences, Vol. 58, No. 4, p. 1279-1287.
  • [27] Kelsall D.F., 1961. Application of probability in the assessment of flotation systems. Transactions of the Institution of Mining and Metallurgy, Vol. 70, p. 191-204.
  • [28] King R.P., 2001. Modeling and Simulation of Mineral Processing Systems. Publisher: Butterworth-Heinemann, Oxford, Great Britain, 403 p.
  • [29] Kirjavainen V.M., 1989. Application of a probability model for the entrainment of hydrophilic particles in froth flotation. International Journal of Mineral Processing, Vol. 27, Iss. 1-2, p. 63-74.
  • [30] Koh P.T.L., Schwarz M.P., 2006. CFD modelling of bubble–particle attachments in flotation cells. Minerals Engineering, 19, p. 619-626.
  • [31] Koh P.T.L., Schwarz M.P., 2008. Modelling attachment rates of multi-sized bubbles with particles in a flotation cell. Minerals Engineering, 21, p. 989-993.
  • [32] Kuopanportti H., Suorsa T., Dahl O., Niinimäki J., 2000. A model of conditioning in the flotation of a mixture of pyrite and chalcopyrite ores. International Journal of Mineral Processing, 59, p. 327-338.
  • [33] Laurila H., Karesvuori J., Tiili O., 2002. Strategies for Instrumentation and Control of Flotation Circuits. Mineral Processing Plant Design. Practice and Control, Vol. 2 (Edited by A.L. Mular, D.N. Halbe and D.J. Barrat), p. 2174-2195.
  • [34] Li Y., Zhao W., Gui X., Zhang X., 2013. Flotation kinetics and separation selectivity of coal size fractions. Physicochemical Problems of Mineral Processing, 49 (2), p. 387-395.
  • [35] Lynch A.J., Johnson N.W., Manlapig E.V., Thorne C.G., 1981. Mineral and Coal Flotation Circuits - Their simulation and Control. Publisher: Elsevier, 290 p.
  • [36] Maldonado M.A., 2010. Advances in estimation and control for flotation columns. PhD Thesis, Faculté des sciences et de génie, Université Laval, Québec, Canada, 175 p.
  • [37] Marais C., Aldrich C., 2011. The estimation of platinum flotation grade from froth image features by using artificial neural networks. The Journal of The Southern African Institute of Mining and Metallurgy, Vol. 111, p. 81-85.
  • [38] Milošević S., 1994. Flotacijska koncentracija – Teorijske osnove flotiranja. Technical Faculty in Bor, University of Belgrade, 211 p. (In Serbian).
  • [39] Miljanović I., 2008. Fazi logičko upravljanje procesima u pripremi mineralnih sirovina. Faculty of Mining and Geology, University of Belgrade, 161 p. (In Serbian).
  • [40] Mohammed A.A., 2007. Removal of Emulsified Paraffine from Water: Effect of Bubble Size and Particle Size on Kinetic of Flotation, Iraqi Journal of Chemical and Petroleum Engineering, Vol. 8, No. 3, p. 1-5.
  • [41] Moolman D.W., Aldrich C., Van Deventer J.S.J., 1995. The monitoring of froth surfaces on industrial flotation plants using connectionist image processing techniques. Minerals Engineering, Vol. 8, Iss. 1/2, p. 23-30.
  • [42] Nakhaei F., Mosavi M.R., Sam A., Vaghei Y., 2012. Recovery and grade accurate prediction of pilot plant flotation column concentrate: Neural network and statistical techniques. International Journal of Mineral Processing, 110-111, p.140-154.
  • [43] Nakhaei F., Mosavi M.R., Sam A., 2013. Recovery and grade prediction of pilot plant flotation column concentrate by a hybrid neural genetic algorithm. International Journal of Mining Science and Technology, 23, p. 69-77.
  • [44] Natarajan R., Nirdosh I., 2006. A Comparative Study of Kinetics of Flotation of a Copper-Nickel Ore by N-Hydrocinnamoyl-N-Phenylhydroxylamine (HCNPHA) Vis-À-Vis Potassium Amyl Xanthate (PAX). Proceedings of the International Seminar on Mineral Processing Technology, Chennai, India, p. 236-242.
  • [45] Nguyen A.V., Ralston J., Schulze H.J., 1998. On modelling of bubble-particle attachment probability in flotation. International Journal of Mineral Processing, 53, p. 225-249.
  • [46] Nguyen A.V., 1998. Particle-bubble encounter probability with mobile bubble surfaces. International Journal of Mineral Processing, Vol. 55, Iss. 2, p. 73-86.
  • [47] Oproiu G., Lacatusu I., Stoica L., 2009. Examination of Kinetic Flotation Process for Two Experimental Cu(II) and Ni(II) – α-benzoinoxime Systems, Based on Kinetic Literature Models. Chemistry Magazine (Revista de Chimie), Vol. 60 (6), p. 641-645.
  • [48] Pérez-Correa R., González G., Casali A., Cipriano A., Barrer R., Zavala E., 1998. Dynamic modelling and advanced multivariable control of conventional flotation circuits. Minerals Engineering, Vol. 11, No. 4, p. 333-346.
  • [49] Pitt J.C., 1968. The development of system for continuous optimal control of flotation plants. In: Computer Systems Dynamics and Automatic Control in Basic Industries, I.F.R.C Symposium, Sydney, p. 165-171.
  • [50] Polat M., Chander S., 2000. First-order flotation kinetics models and methods for estimation of the true distribution of flotation rate constants. International Journal of Mineral Processing, Vol. 58, p. 145-166.
  • [51] Rahman R.M., Ata S., Jameson G.J., 2012. The effect of flotation variables on the recovery of different particle size fractions in the froth and the pulp. International Journal of Mineral Processing, Vol. 106-109, p. 70-77.
  • [52] Rath S.S., Sahoo H., Das B., 2013. Optimization of flotation variables for the recovery of hematite particles from BHQ ore. International Journal of Minerals, Metallurgy and Materials, Vol. 20, No. 7, p. 605-611.
  • [53] Rojas D., Cipriano A., 2011. Model based predictive control of a rougher flotation circuit considering grade estimation in intermediate cells. Dyna Vol.78, No. 166, p. 29-37.
  • [54] Runge K.C., Franzidis J.P., Manlapig E.V., 2003a. A study of the flotation characteristics of different mineralogical classes in different streams of an industrial circuit. Proceedings of XXII International Mineral Processing Congress, 29 September – 3 October 2003, Cape Town, South Africa, p. 962-972.
  • [55] Runge K.C., Franzidis J.P., Manlapig E.V., Harris M.C., 2003b. Structuring a flotation model for robust prediction of flotation circuit performance. Proceedings of XXII International Mineral Processing Congress, 29 September – 3 October 2003, Cape Town, South Africa, p. 973-984.
  • [56] Saleh A.M., 2010. A study on the performance of second order models and two phase models in iron ore flotation. Physicochemical Problems of Mineral Processing, Vol. 44, p. 215-230.
  • [57] Savassi O.N., Alexander D.J., Franzidis J.P., Manlapig E.V., 1998. An empirical model for entrainment in industrial flotation plants. Minerals Engineering, Vol. 11, No. 3, p. 243-256.
  • [58] Sawyerr F., Deglon D.A., O’Connor C.T., 1998. Prediction of bubble size distribution in mechanical flotation cells. The Journal of The South African Institute of Mining and Metallurgy, 98 (4), p. 179-185.
  • [59] Sbarbaro D., Maldonado M., Cipriano A., 2008. A two level hierarchical control structure for optimizing a rougher flotation circuit. Proceedings of the 17th World Congress The International Federation of Automatic Control, Seoul, Korea, July 6-11, 2008, p. 11018-11022.
  • [60] Schulze H.J., 1993. Flotation as a heterocoagulation process: Possibilities of calculating the probability of flotation. In: Coagulation and Flocculation: Theory and Applications (Edited by B. Dobiáš), p. 321-353.
  • [61] Schulze H.J., Stöckelhuber W., 2005. Flotation as a Heterocoagulation Process: Possibilities of Calculating the Probability of the Microprocesses, Rupture of the Intervening Thin Liquid Film, and Progress in Modeling of the Overall Process. In: Coagulation and Flocculation, (Edited by H. Stechemesser and B. Dobiáš), p. 455-517.
  • [62] Schumann R., 1942. Flotation Kinetics. Part 1. Methods for Steady-State Study of Flotation Problems. Journal of Physical Chemistry, Vol. 46, p. 891-902.
  • [63] Shammas N.K., Bennett G.F., 2010. Principles of Air Flotation Technology. In: Flotation Technology (Edited by L.K. Wang, N.K. Shammas, W.A. Selke, D.B. Aulenbach), Chapter 1, p. 1-47.
  • [64] Shean B.J., Cilliers J.J., 2011. A review of froth flotation control. International Journal of Mineral Processing, 100, p. 57-71.
  • [65] Sherrell I.M., 2004. Development of a Flotation Rate Equation from First Principles under Turbulent Flow Conditions. PhD Thesis, Virginia Polytechnic Institute and State University, Blacksburg, 95 p.
  • [66] Somasundaran P., Lin I.J., 1973. Method for Evaluating Flotation Kinetics Parameters. Transactions of SME, Vol. 254, p. 181-184.
  • [67] Sosa-Blanco C., Hodouin D., Bazin C., Lara-Valenzuela C., Salazar J., 1999. Integrated simulation of grinding and flotation. Application to a lead-silver ore, Minerals Engineering, Vol. 12, No. 8, p. 949-967.
  • [68] Sripriya R., Rao P.V.T., Choudhury B.R., 2003. Optimisation of operating variables of fine coal flotation using a combination of modified flotation parameters and statistical techniques. International Journal of Mineral Processing 68, p. 109-127.
  • [69] Tsatouhas G., Grano S.R., Vera M., 2006. Case studies on the performance and characterisation of the froth phase in industrial flotation circuits. Minerals Engineering, 19, p. 774-783.
  • [70] Uçurum M., Bayat O., 2007. Effects of operating variables on modified flotation parameters in the mineral separation. Separation and Purification Technology, 55, p. 173-181.
  • [71] Vera M.A., Mathe Z.T., Franzidis J.-P., Harris M.C., Manlapig E.V., O’Connor C.T., 2002. The modelling of froth zone recovery in batch and continuously operated laboratory flotation cells. International Journal of Mineral Processing, Vol. 64 p. 135-151.
  • [72] Vieira S.M., Sousa J.M.C., Durão F.O., 2005. Fuzzy modelling strategies applied to a column flotation process. Minerals Engineering 18, p. 725-729.
  • [73] Villar R. del, Desbiens A., Maldonado M., Bouchard J., 2010. Automatic Control of Flotation Columns. In: Advanced Control and Supervision of Mineral Processing Plants (Edited by D. Sbárbaro, R. del Villar), Chapter 6, p. 249-286.
  • [74] Welsby S.D.D., Vianna S.M.S.M., Franzidis J.-P., 2010. Assigning physical significance to floatability components. International Journal of Mineral Processing, 97, p. 59-67.
  • [75] Woodburn E.T., 1970. Mathematical modelling of flotation process. Minerals Science and Engineering, Vol. 2, p. 3-17.
  • [76] Xian-ping L., Xue-kun T., Li-ping H., Li-ying L., 2011. Effects of size distribution on flotation kinetics of Chalcopyrite. 2011 International Conference on Environment Science and Engineering IPCBEE, Vol. 8, IACSIT Press, Singapore, p. 81-85.
  • [77] Yianatos J.B., 1989. Column flotation: modeling and technology. In Proceedings of International Colloquium: Developments in Froth Flotation, Vol. 2, 3-4 August 1989, Cape Town, South Africa, p. 1-30.
  • [78] Yianatos J.B., Bergh L.G., Díaz F., Rodríguez J., 2005a. Mixing characteristics of industrial flotation equipment. Chemical Engineering Science, 60, p. 2273-2282.
  • [79] Yianatos J., Bucarey R., Larenas J., Henríquez F., Torres L., 2005b. Collection zone kinetic model for industrial flotation columns. Minerals Engineering, 18, p.1373-1377.
  • [80] Yianatos J.B., Henríquez F.D., 2006. Short-cut method for flotation rates modelling of industrial flotation banks. Minerals Engineering, 19, p. 1336-1340.
  • [81] Yianatos J.B., Henríquez F.H., Oroz A.G., 2006. Characterization of large size flotation cells. Minerals Engineering, 19, p. 531-538.
  • [82] Yianatos J.B., 2007. Fluid flow and kinetic modelling in flotation related processes columns and mechanically agitated cells – a review. Trans IChemE, Part A, Chemical Engineering Research and Design, Vol. 85 (A12), p. 1591-1603.
  • [83] Yianatos J., Contreras F., 2010. Particle entrainment model for industrial flotation cells. Powder Technology, 197, p. 260-267.
  • [84] Yianatos J., Bergh L., Vinnett L., Contreras F., Díaz F., 2010. Flotation rate distribution in the collection zone of industrial cells. Minerals Engineering, 23, p. 1030-1035.
  • [85] Yianatos J., Carrasco C., Bergh L., Vinnett L., Torres C., 2012. Modelling and simulation of rougher flotation circuits. International Journal of Mineral Processing, Vol. 112-113, p. 63-70.
  • [86] Zhang J.G., 1989. Factors affecting the kinetics of froth flotation. PhD thesis, Department of Mining and Mineral Engineering, University of Leeds, Great Britain, 41 p.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57133935-82c1-46d8-955f-72f22fdeab94
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.