PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Iridoids from Cornus mas L. and their potential as innovative ingredients in cosmetics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dogwood berries represent a valuable source of a variety of active ingredients. A group that deserves special attention comprises iridoids – compounds with potent antioxidant, antiinflammatory and antibacterial properties. The present study is an attempt to obtain an innovative plant material from dogwood berries. To this end, water and water/ethanol-based extracts (1:1) were prepared and, as the next step, an iridoids-rich fraction was isolated. The total content of iridoids was determined spectrophotometrically, and antioxidant properties of the isolates were concurrently assessed. Additionally, skin whitening activity of isolated fractions was assessed on the basis of tyrosinase inhibition measurement. The testing schedule also involved the formulation of model washing systems based on anionic surfactants. The effect of adding the fractions obtained by the above method on the irritant potential was assessed by determining the zein number.
Rocznik
Strony
122--127
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
  • The University of Information Technology and Management in Rzeszow, Department of Cosmetology, Kielnarowa 386a, 36-020 Tyczyn, Poland
  • University of Technology and Humanities in Radom, Department of Chemistry, Chrobrego 27, Radom 26-600, Poland
autor
  • The University of Information Technology and Management in Rzeszow, Department of Cosmetology, Kielnarowa 386a, 36-020 Tyczyn, Poland
autor
  • The University of Information Technology and Management in Rzeszow, Department of Cosmetology, Kielnarowa 386a, 36-020 Tyczyn, Poland
Bibliografia
  • 1. Bulter, H. (2000). Poucher’s perfumes, cosmetics and soaps (10th ed.). London. United Kingdom: Kluwer Academic Publishers.
  • 2. Elser, P. & Maibach, H. (2000). Cosmeceuticals and active cosmetics. New York, USA: Taylor & Francis Group.
  • 3. Wang, W., Sun, F., An, Y., Ai, H., Zhang L., Huang, W. & Li, L. (2009). Morroniside protects human neuroblastoma SH-SY5Y cells against hydrogen peroxide-induced cytotoxicity. Eur. J. Pharmacol. 613(1–3), 19–23. DOI: 10.1016/j.ejphar.2009.04.013.
  • 4. Seeram, N. P. & Nair, M.G. (2002). Inhibition of lipid peroxidation and structure-activity-related studies of the dietary constituents anthocyanins, anthocyanidins, and catechins. J. Agric. Food Chem. 50(9), 5308–5312. DOI: 10.1021/jf025671.
  • 5. Vareed, S. K., Reddy, M. K., Schutzki, R. E. & Nair, M. G. (2006). Anthocyanins in Cornus alternifolia, Cornus controversa, Cornus kousa and Cornus florida fruits with health benefits. Life Sci. 11, 78(7), 777–784. DOI: 10.1016/j.lfs.2005.05.094.
  • 6. Kyriakopoulos, A. M. & Dinda, B. (2015). Cornus mas (Linnaeus) novel devised medicinal preparations: bactericidal effect against Staphylococcus aureus and Pseudomonas aeruginosa. Molecules 20, 11202–11218. DOI:10.3390/molecules200611202.
  • 7. Tural, S. & Koca, I. (2008). Physicochemical and antioxidant properties of Cornelian Cherry fruits (Cornus mas L.) grown in Turkey. Sci. Hortic. 116, 362–366. DOI: 10.1016/J.Scienta.2008.02.003.
  • 8. Klimenko, S. W. (2004). The cornelian cherry (Cornus mas L.) collection, preservation and utilization of genetic resources. J. Fruit Ornam. Plant Res. 12, 93–98. INRMM:13555513.
  • 9. Pawlowska, A. M., Camangi, F. & Braca, A. (2010). Quali-quantitative analysis of flavonoids of Cornus mas L. (Cornaceae) fruits. Food Chem. 119, 1257–1261. DOI: 10.1016/j.foodchem.2009.07.063.
  • 10. Niemmen, M., Suomi, J., Nouhuys, S., Sauri, P. & Riekkola, M. L. (2003). Effect of iridoid glycoside content on oviposition host plant choice and parasitism in a specialist herbivore. J. Chem. Ecol. 29(4). ID: 12775146.
  • 11. Vodovotz, Y., Constantine, G., Rubin, J., Csete, M., Voit E.O. & An G. (2009). Mechanistic simulations of inflammation: current state and future prospects. Math. Biosc. 217, 1–10. DOI: 10.1016/j.mbs.2008.07.013.
  • 12. Calixto, J. B., Campos, M. M., Otuki, M. F. & Santos, A. R. S. (2004). Anti-inflammatory compounds of plant origin. Part II. Modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med. 70, 93–103. DOI: 10.1055/s-2004-815483.
  • 13. Háznagy-Radnai, E., Balogh, A., Czigle, S., Máthé, I., Hohmann, J. & Blazsó, G. (2011). Antiinflammatory activities of hungarian stachys species and their iridoids. Phytother Res. 26(4), 505–509. DOI: 10.1002/ptr.3582.
  • 14. Masuda, M., Itoh K., Murata K., Naruto S., Uwaya A., Isami, F. & Matsuda, H. (2012). Inhibitory effects of Morinda citrifolia extract and its constituents on melanogenesis in murine B16 melanoma cells. Biol. Pharm. Bull. 35(1), 7–83. DOI: 10.2145/biol.2012.3254.
  • 15. Akihisa, T., Seino, K., Kaneko, E., Watanabe, K., Tochizawa, S., Fukatsu, M., Banno, N., Metori, K. & Kimura, Y. (2010). Melanogenesis inhibitory activities of iridoid, hemiterpene, and fatty acid-glycosides from the fruits of Morinda citrifolia (Noni). J. Oleo Sci. 59(1), 49–57. DOI: 10.5650/jos.59.49.
  • 16. Saracoglu, I. & Harput, U. S. (2012). In vitro cytotoxic activity and structure activity relationships of iridoid glucosides derived from Veronica species. Phytother. Res. 26(1), 148–152. DOI: 10.1002/ptr.3546.
  • 17. Saracoglu, I., Oztunca, F.H., Nagatsu, A. & Harput, U. S. (2011). Iridoid content and biological activities of Veronica cuneifolia subsp. cuneifolia and Veronica cymbalaria. Pharm. Biol. 49(11), 1150–1157. DOI: 10.3109/13880209.2011.575790.
  • 18. Es Haghi, M., Dehghan, G., Banihabib, N., Zare, S., Mikaili, P. & Panahi, F. (2012). Protective effects of Cornus mas fruit extract on carbon tetrachloride induced nephrotoxicity in rats. Indian J. Nephrol. 24(5), 291–296. DOI: 10.4103/0971-4065.133000.
  • 19. Koichiro, K. & Shoichi, H. (1992). U.S. Patent no. 5,078,750. Washington, D.C.: U.S. Patent and Trademark Office.
  • 20. Baj, T., Kołtunowska, D., Głowniak, K. & Wolski, T. (2015). Determination of aucubin in aerial parts of Buddleja davidii Franch. using different TLC-detection methods. XX. 46 symposium on essential oils. Lublin, Poland, Annales Universitatis Maria Curie-Sklodowska.
  • 21. Brand-Williamis, W., Cuvelier, M. & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 28, 25–30. DOI: 0023-6438/95/010025.
  • 22. Re, R., Pellegrini, N., Protegente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237. DOI: 0891-5849(98)00315-3.
  • 23. Płocica, J., Tal-Figiel, B. & Figiel, W. (2014). Badania reologiczne i sensoryczne stosowane do oceny preparatów kosmetycznych. Ś.P.K. 17(1), 68–73.
  • 24. Lim, T. Y., Lim, Y. Y. & Yule, C. M. (2009). Evaluation of antioxidant, antibacterial and anti-tyrosinase activities of four Macaranga species. Food Chem. 114, 594–599. DOI: 10.1016/j.foodchem.2008.09.093.
  • 25. Studzińska-Sroka, E., Frątczak, A. & Bylka, W. (2016). Evaluation of properties inhibiting tyrosinase by selected plant extracts. Pol. J. Cosmetol. 19(1), 51–55.
  • 26. West, B.J., Deng, S., Jensen, J., Palu, A.K. & Berrio, F.L. (2012). Antioxidant, toxicity, and iridoid tests of processed cornelian cherry fruits. IJFST. 7, 1392–1397. DOI: 10.1111/j.1365-2621.2012.02985.
  • 27. Kwak, H., Kim, H. J., Lee, K. H., Kang, S. C. & Zee, O. P. (2009). Antioxidative iridoid glycosides and phenolic compounds from Veronica peregrine. Jong. Arch. Pharm. Res. 32(2), 207–213. DOI: 10.1007/s12272-009-1137-x.
  • 28. Wael, M., Abdel-Mageed, A., Enaam, Y., Backheet, A. Azza, A., Khalifa, A. Zedan, Z., Ibraheim, A. & Samir, A. (2007). Antiparasitic antioxidant phenylpropanoids and iridoid glycosides from Tecoma mollis. Fitoterapia 83(3), 500–507. DOI: 10.1016/j.fitote.2011.12.025.
  • 29. Kucharska, M. (2012). Związki aktywne owoców derenia. Wrocław, Poland, Uniwersytet Przyrodniczy we Wrocławiu.
  • 30. Xiao, N. M., Xue, X. Y., Feng, J. T., Zhang, X. L. & Liang, X. M. (2011). Isolation and purification of unstable iridoid glucosides from traditional chinese medicine by preparative high performance liquid chromatography coupled with solid-phase extraction. Chem. Res. Chinese Univ. 27(3), 392–396. DOI: 1005-9040(2011)-03-392-05.
  • 31. Norlia, M, Siti, A. M, Mashitah, M. Y. & Jolius, G. (2014). Influence of solvent polarity and conditions on extraction of antioxidant, flavonoids and phenolic content from Averrhoa bilimbi. J. Food Sci. Eng. 4, 255–260. DOI: 10.17265/2159-5828/2014.05.006.
  • 32. Dai, J. & Mumper, R. J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 21:15(10), 7313–7352. DOI: 10.3390/molecules15107313.
  • 33. Pacifico, S., D’Abrosca, B., Pascarella, M. T., Letizia, M., Uzzo, P., Piscopo, V. & Fiorentino, A. (2009). Antioxidant efficacy of iridoid and phenylethanoid glycosides from the medicinal plant Teucrium chamaedris in cell-free systems. Bioorg. Med. Chem. (17), 6173–6179. DOI: 10.1016/j.bmc.2009.07.065.
  • 34. Polinicencu, C., Popescu, H. & Nistor, C. (1980). Vegetal extracts for cosmetic use: extracts from fruits of Cornus mas. Preparation and characterization. Cluj. Med. 53, 160–163.
  • 35. Pantelidis, G. E., Vasilakakis, M., Manganaris, G. A. & Diamantidis, G. R. (2007). Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and cornelian cherries. Food Chem. 102, 777–783. DOI: 10.1016/j.foodchem.2006.06.021.
  • 36. Demir, F. & Kalyoncu, I. H. (2003). Some nutritional, pomological and physical properties of cornelian cherry (Cornus mas L.). J. Food Eng. 60, 335–341. DOI: 10.1016/S0260-8774(03)00056-6.
  • 37. Celep, E., Aydın, A. & Yesilada, E. (2012). A comparative study on the in vitro antioxidant potentials of three edible fruits: cornelian cherry, Japanese persimmon and cherry laurel. Food. Chem. Toxicol. 50, 3329–3335. DOI: 10.1016/j.fct.2012.06.010.
  • 38. Jackson, C. T., Paye, M. & Maibach, H. (2014). Mechanism of skin irritation by surfactants and anti-irritants for surfactants base products (pp. 353–358). In Barel, A., Paye, M. & Maibach, H. Handbook of cosmetic science and technology. Fourth edition. Bosta Rocon. USA: CRC Press Taylor & Francis Group.
  • 39. Lips, A., Ananthapadmanabhan, K. P., Vethamuthu, M., Hua, X. Y., Yang, L., Vincent, C., Deo N. & Somasundaran, P. (2007). Role of surfactant micelle charge in protein denaturation and surfactant-induced skin irritation, (pp. 177–189). In Rhein, L., Schlossman, M., O’Lenick, A. & Somasundaran, P. Surfactants in personal care products and decorative cosmetics third edition. Bosta rocon, USA: CRC Press Taylor & Francis Group.
  • 40. Agner, T. & Serup, J. (1990). Sodium lauryl sulphate for irritant patch testing—A dose-response study using bioengineering methods for determination of skin irritation. J. Invest. Dermatol. 95, 543–547. DOI: 022-202X/90/S03.50.
  • 41. Polefka, T. (1999). Surfactants interaction with skin. In Broze, G. Handbook of detergents. Part A: Properties. Surf. Sci. Ser. Vol. 82. Marcel Dekker Publ.
  • 42. Bujak, T., Wasilewski, T. & Nizioł-Łukaszewska, Z. (2015). Role of macromolecules in the safety of use of body wash cosmetics, Coll. Surf. B. 135, 497–503. DOI: 10.1016/j.colsurfb.2015.07.051.
  • 43. Draelos, Z. D. & Dover, J. S. (2011). Kosmeceutyki. Wroclaw, Poland: Elsevier, Urban&Partner.
  • 44. Kima, Y. J. & Uyamab, H. (2005). Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell. Mol. Life Sci. 62, 1707–1712. DOI: 10.1007/s00018-005-5054-y.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-570fd0a4-5624-4a5f-87f5-a89c6f48cbc4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.