Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Molybdenum disulfide (MoS2 ) is one of the most widely used solid lubricants applied in different ways on the surfaces under friction. In this work, AISI 316 austenitic stainless steel was coated with MoS2 , using chemical vapor deposition (CVD) at four different temperatures (400, 500, 600 and 700°C). Coatings properties were investigated using SEM, EDX, XRD and FTIR, Hardness Tester and Roughness tester. The results showed that with simultaneous evaporation of sulfur and molybdenum trioxide (MoO3 ) in the CVD chamber, a uniform coating layer containing MoS2 and MoO2 phases was formed. Increase in the substrate temperature resulted in the rise in the amount of MoS2 to MoO2 phases. The thickness, grain size and the hardness of the coating were 17-29 μm, 50-120 nm and 260-480 HV respectively. Friction tests carried out using pin-on-plate method under normal loads of 10 N under ambient conditions showed values of the friction coefficient 0.25-0.40.
Wydawca
Czasopismo
Rocznik
Tom
Strony
555--562
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Shahid Bahonar University of Kerman, Faculty of Engineering, Department of Metallurgy and Materials Science, Jomhoori Eslami BLVD., Kerman, Iran
autor
- Shahid Bahonar University of Kerman, Faculty of Engineering, Department of Metallurgy and Materials Science, Jomhoori Eslami BLVD., Kerman, Iran
autor
- Sanaat Research Institute, Tehran, Iran
Bibliografia
- [1] J. Yang, Y. Jiang, J. Hardell, B. Prakash, Influence of service temperature on tribological characteristics of self-lubricant coatings: A review, Front. Mater. Sci. 7, 28-39 (2013).
- [2] A. R. Lansdown, Molybdenum Disulphide Lubrication, 1999 Elsevier.
- [3] Wang, Haidou, Binshi Xu, Jiajun Liu, Micro and nano sulfide solid lubrication, 2013 Springer Science and Business Media.
- [4] O. Smorygo, S. Voronin, P. Bertrand, I. Smurov, Fabrication of thick molybdenum disulphide coatings by thermal-diffusion synthesis, Tribol. Lett. 17, 723-726 (2004).
- [5] Y. Peng, Z. Meng, C. Zhong, J. Lu, W. Yu, Y. Jia, Y. Qian, Hydrothermal Synthesis and Characterization of Single-Molecular-Layer MoS2 and MoSe2, Chem. Lett. 9, 772-773 (2001).
- [6] H. Luo, C. Xu, D. Zou, L. Wang, T. Ying, Hydrothermal synthesis of hollow MoS2 microspheres in ionic liquids/water binary emulsions, Mater. Lett. 62, 3558-3560 (2008).
- [7] C. Gong, C. Huang, J. Miller, L. Cheng, Y. Hao, D. Cobden, J. Kim, R. S. Ruoff, R. M. Wallace, K. Cho, Metal contacts on physical vapor deposited monolayer MoS2, ACS nano. 7, 11350-11357 (2013).
- [8] D. Kong, H. Wang, J. J. Cha, M. Pasta, K. J. Koski, J. Yao, Y. Cui, Synthesis of MoS2 and MoSe2 films with vertically aligned layers, Nano letters 13, 1341-1347 (2013).
- [9] Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P.-H. Tan, M. Kan, Epitaxial monolayer MoS2 on mica with novel photoluminescence, Nano lett. 13, 3870-3877 (2013).
- [10] Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition, Adv. Mater. 24, 2320-2325 (2012).
- [11] P. Pramanik, S. Bhattacharya, Deposition of molybdenum chalcogenide thin films by the chemical deposition technique and the effect of bath parameters on these thin films, Mater. Res. Bull. 25, 15-23 (1990).
- [12] J. Cheon, J. E. Gozum, G. S. Girolami, Chemical Vapor Deposition of MoS2 and TiS2 Films From the Metal-Organic Precursors Mo(S-t-Bu)4 and Ti(S-t-Bu)4, Chem. Mater. 9, 1847-1853 (1997).
- [13] G. Cai, J. Jian, X. Chen, M. Lei, W. Wang, Regular hexagonal MoS2 microflakes grown from MoO3 precursor, Appl. Phys. A 89, 783-788 (2007).
- [14] R. Browning, P. Padigi, R. Solanki, D. J. Tweet, P. Schuele, D. Evans, Atomic layer deposition of MoS2 thin films, Mater. Res. Express 2, 35006 (2015).
- [15] M. R. Close, J. L. Petersen, E. L. Kugler, Synthesis and characterization of nanoscale molybdenum sulfide catalysts by controlled gas phase decomposition of Mo(CO)6 and H2S, Inorg. Chem. 38, 1535-1542 (1999).
- [16] K. He, S. Zhang, J. Mi, J. Chen, L. Cheng, Mechanism of catalytic hydropyrolysis of sedimentary organic matter with MoS2, Pet. Sci. 8, 134-142 (2011).
- [17] U. Holzwarth, N. Gibson, The Scherrer equation versus the ‘Debye-Scherrer equation, Nat. Nanotechnol. 6, 534-534 (2011).
- [18] J.H. Park, T.S. Sudarshan, Chemical Vapor Deposition, 2001 ASM International.
- [19] A. Pierson, O. Hugh, Handbook of Chemical Vapor Deposition (CVD) (Second Edition), William Andrew Publishing, 1999 Norwich.
- [20] H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. H. Castro Neto, J. Martin, S. Adam, B. Ozyilmaz, Transport properties of monolayer MoS2 grown by chemical vapor deposition, Nano Lett. 14, 1909-1913 (2014).
- [21] X. Wang, H. Feng, Y. Wu, L. Jiao, Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition, J. Am. Chem. Soc. 135, 5304-5307 (2013).
- [22] I. G. Vasilyeva, I. P. Asanov, L. M. Kulikov, Experiments and Consideration about Surface Nonstoichiometry of Few-Layer MoS2 Prepared by Chemical Vapor Deposition, J. Phys. Chem. 119, 23259-23267 (2015).
- [23] F. Maugé, J. Lamotte, N. Nesterenko, O. Manoilova, A. Tsyganenko, FT-IR study of surface properties of unsupported MoS2, Catal. today 70, 271-284 (2001).
- [24] L. Q. Mai, B. Hu, W. Chen, Y. Qi, C. Lao, R. Yang, Y. Dai, Z. L. Wang, Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries, Adv. Mater. 19, 3712-3716 (2007).
- [25] A. Chokshi, A. Rosen, J. Karch, H. Gleiter, On the validity of the Hall-Petch relationship in nanocrystalline materials, Scr. Metall. 23, 1679-1683 (1989).
- [26] H. P. Martinz, B. Nigg, Surface Hardened Molybdenum Alloys for the Processing of Polymers, Surface Modification Technologies: Proceedings of the 20th International Conference on Surface Modification Technologies, ASM International, 2007.
- [27] J. Panitz, L. Pope, J. Lyons, D. Staley, The tribological properties of MoS2 coatings in vacuum, low relative humidity, and high relative humidity environments, J. Vac. Sci. Technol. A 6, 1166-1170 (1988).
- [28] Y. Takeichi, T. Chujo, N. Okamoto, M. Uemura, Effects of Molybdenum Trioxide on the Tribological Properties of Aluminum Bronze under High Temperature Conditions, Tribology Online 4, 135-139 (2009).
Uwagi
EN
This research has been done by the cooperation of the Sanaat Research Institute and the authors wish to thank this Institute for providing the research funding.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-570ec114-15fa-4405-9178-885b33b9fdaa