PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The study of phenylboronic acid optical properties towards creation of a glucose sensor

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents influence of pH and glucose concentration on phenylboronic acid (PBA) fluorescence studied by steady-state and time-resolved measurements. Fluorescence of PBA decreases with growing pH. These changes reflected acid-base equilibrium of PBA and allowed to estimate value of pKd as 9.2, which is comparable with literature data. Fluorescence intensity of phenylboronic acid is quenched in presence of glucose. The effect of quenching is more pronounced with increasing pH. At pH 7 quenching can be described by Stern-Volmer equation, at pH 8 and 9 by modified one. The obtained quenching constants are growing with pH increase. The quenching of phenylboronic acid fluorescence by glucose is a static one, which is confirmed by time-resolved measurements. Two lifetimes were found for fluorescence decay of phenylboronic acid. The lifetimes are practically independent on pH and glucose concentration and also fraction of both lifetimes are nearly the same. The obtained Stern-Volmer constants can be interpreted as apparent equilibrium constants of ester formation between acid and glucose.
Rocznik
Strony
101--110
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
  • Lodz University of Technology, Institute of General Food Chemistry, Stefanowskiego 4/10, 90-924 Lodz, Poland
autor
  • Lodz University of Technology, Institute of General Food Chemistry, Stefanowskiego 4/10, 90-924 Lodz, Poland
autor
  • Lodz University of Technology, Institute of General Food Chemistry, Stefanowskiego 4/10, 90-924 Lodz, Poland
Bibliografia
  • 1. Fan Z, Liu B, Liu X, Li Z, Wang H, Yang S, Wang J. A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor. Electrochim. Acta 2013, 109: 602-608.
  • 2. Kim J, Jo GJ, Katoch A, Choi SW, Kim S. Tailoring the surface area of ZnO nanorods for improved performance in glucose sensors. Sensors Actuat. B-Chem 2014, 192:216-220.
  • 3. Mohammadi L, Klotzbuecher T, Sigloch S, Welzel K, Goddel M, Pieber T, Schaupp L. In vivo evaluation of a chip based near infrared sensor for continuous glucose monitoring. Biosens Bioelectron 2014, 53:99-104.
  • 4. Metzger M, Leibowitz G, Wainstein J, Glasere B, Raz I. Reproducibility of glucose measurements using the glucose sensor. Diabetes Care 2002, 6:1185-1191.
  • 5. Matschinsky F. Glucokinase as glucose sensor and metabolic signal generator in panceatic B-cells and hepatocytes. Diabetes 1990, 6:647-652.
  • 6. Xiao F, Li Y, Gao H, Ge S, Duan H. Growth of coral-like PtAu–MnO2 binary nanocomposites on free-standing graphene paper for flexible nonenzymatic glucose sensors. Biosens Bioelectron 2013, 41:417-423.
  • 7. Hansen J, Christensen JB, Petersen JF, Hoeg-Jensen T, Norrild JC. Arylboronic acids: a diabetic eye on glucose sensing. Sens Actuat B 2012, 161:45-79.
  • 8. Freeman R, Bahshi B, Finder T, Gill R, Willner T. Competitive analysis of saccharides or dopamine by boronic acid-functionalized CdSe-ZnS quantum dots. Chem Commun 2009, 764-766.
  • 9. Wu W, Zhou T, Aiello M, Zhou S. Construction of optical glucose nanobiosensor with high sensitivity and selectivity at physiological pH on the basis of organic- inorganic hybrid microgels. Biosens Bioelectron 2010, 25:2603-2610.
  • 10.Cannizzo C, Amigoni-Gerbier S, Larpent Ch. Boronic acid-functionalized nanoparticles: synthesis by microemulsion polymerization and application as a re-usable optical nanosensor for carbohydrates. Polymer 2005, 46:1269-1276.
  • 11. Zhang Y, He Z, Li G. A novel fluorescent vesicular sensor for saccharides based on boronic acid-diol interaction. Talanta 2010, 81:581-596.
  • 12. Guzow K, Jażdżewska D, Wiczk W. 3-[2-(Boronophenyl)benzoxazol-5-yl]alanine derivatives as fluorescent monosaccharide sensors. Tetrahedron 2012, 68:9240-9248.
  • 13. Egawa Y, Seki T, Takahashi S, Anzai J. Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives. Mat Sci Eng C 2011, 31:1257-1264.
  • 14.Yum K, Ahn JH, McNicholas T, Barone P, Kim JH, Jain R, Strano M. Boronic acid library for selective, reversible near-infrared fluorescence quenching of surfactant suspended single-walled carbon nanotubes in response to glucose. Acs Nano 2012, 6:819-830.
  • 15. Sun, X-Y, Liu B, and Jiang Y-B. An extremely sensitive monoboronic acid based fluorescent sensor for glucose. Anal Chim Acta 2004, 515285-290.
  • 16.Yang W, Yan J, Springsteen G, Deeter S, Wang B. A novel type of fluorescent boronic acid that shows large fluorescence intensity changes upon binding with a carbohydrate in aqueous solution at physiological pH. Bioorg Med Chem Lett 2003, 13:1019-1022.
  • 17. Badugu R, Lakowicz J, Geddes C. Ophthalmic glucose monitoring using disposable contact lenses – a review. J fluorescence 2004, 14:617-633.
  • 18.Di Cesare N. Lakowicz J. Wavelength-ratiometric probes for saccharides based on donor–acceptor diphenylpolyenes. J Photoch Photobio A 2001, 143:39-47.
  • 19. Cao H, Heagy MD. Fluorescent chemosensors for carbohydrates: a decade’s worth of bright spies for saccharides in review. J Fluoresc 2004, 14:569-583.
  • 20.Ramsey B. Electronic transition in phenylboronic acids. I. Substituent and solvent effects. J Phys Chem-US 1970, 74:2464-2469.
  • 21.Xu S-Y, Ruan Y-B, Luo X-X, Gao Y-F, Zhao J-S, Shen J-S, Jiang Y-B. Enhanced saccharide sensing based on simple phenylboronic acid receptor by coupling to Suzuki homocoupling reaction. Chem Comm 2010, 46:5864-5866.
  • 22. Springsteen G, Wang B. A detailed examination of boronic acid-diol complexation. Tetrahedron 2002, 58:5291-5300.
  • 23. Yan Y, Springsteen G, Deeter S, Wang B. The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols-it is not as simple as it apprears. Tetrahedron 2004, 60:11205-11209.
  • 24.Bosh LI, Fyles TM, James TD. Binary and ternary phenylboronic acid complexes with saccharides and Lewis bases. Tetrahedron 2004, 60:11175-11190.
  • 25. Lakowicz JR. Principles of Fluorescence Spectroscopy. Springer, New York, 2006, pp. 279-289.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-570aeaec-df7d-4907-821b-328ee88a5516
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.