PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing the Strength of Al/Mg Dissimilar Friction Stir Lap Welded Joint by Zn Filler Addition Combined with an Appropriate Heat Input

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
7075-T6 Al and AZ31B Mg dissimilar alloys were friction stir lap welded with or without a Zn filler, and the effect of heat input on the joint quality was systematically studied. The experimental and finite element simulation results displayed that the formation characteristics and microstructures of the joint with or without the Zn filler were significantly affected by the heat input. The tensile shear load of joint with or without the Zn filler increased first and then decreased with the decrease of the welding speed from 200 to 50 mm/min. Moreover, the peak temperature in the stir zone was significantly decreased by the Zn filler addition, and the high temperature zone narrowed along the plate thickness direction. These changes of heat input made that longer mixing region boundary length and larger effective lap width were attained as the Zn filler was used. In addition, due to the replacement of Al-Mg intermetallic compounds (IMCs) by Al-Mg-Zn and Mg-Zn IMCs which were less harmful to the joint, the tensile shear load of the joint with the Zn filler was obviously enhanced compared to that of the joint without the Zn filler at each welding speed. The maximum tensile shear load of 7.2 kN was obtained at the welding speed of 100 mm/min.
Twórcy
autor
  • AVIC Manufacturing Technology Institute, Beijing 100024, P. R. China
autor
  • Shenyang Aerospace University, College of Aerospace Engineering, Shenyang 110136, P. R. China
autor
  • Shenyang Aerospace University, College of Aerospace Engineering, Shenyang 110136, P. R. China
autor
  • Shenyang Aerospace University, College of Aerospace Engineering, Shenyang 110136, P. R. China
Bibliografia
  • [1] Y. Wang, G. Luo, J. Zhang, Q. Shen, L. Zhang, Mat. Sci. Eng. A 559, 868-874 (2013).
  • [2] M. Balamagendiravarman, S. Kundu, S. Chatterjee, Arch. Metall. Mater. 62 (3), 1813-1817 (2017).
  • [3] W.S. Chang, S.R. Rajesh, C.K. Chun, H.J. Kim, J. Mater. Sci. Technol. 27, 199-204 (2011).
  • [4] J. Mohammadi, Y. Behnamian, A. Mostafaei, H. Izadi, T. Saeid, A.H. Kokabi, A.P. Gerlich, Mater. Charact. 101, 189-207 (2015).
  • [5] Y. Huang, X. Meng, Y. Xie, J. Li, L. Wan, Compos. Part B-Eng. 163 (15), 217-223 (2019).
  • [6] Y. Huang, X. Meng, Y. Wang, Y. Xie, L. Zhou, J. Mater. Process. Technol. 257, 148-154 (2018).
  • [7] W.F. Xu, X.K. Wu, J. Ma, H.J. Lu, Y.X. Luo, J. Mater. Res. Technol. 8, 6029-6040 (2019).
  • [8] F. Liu, Z. Zhang, L. Liu, Mater. Charact. 69, 84-89 (2012).
  • [9] K.P. Mehta, P. Carlone, A. Astarita, F. Scherillo, F. Rubino, P. Vora, Mat. Sci. Eng. A 759, 252-261 (2019).
  • [10] L. Liu, D Ren, F. Liu, Materials 7, 3735-3757 (2014).
  • [11] S. Niu, S. Ji, D. Yan, X. Meng, X. Xiong, J. Mater. Process. Technol. 263, 82-90 (2019).
  • [12] M. Farahani, M. Divandari, Int. J. Syst. Signal. Control. Eng. Appl. 9, 86-96 (2016).
  • [13] R. Gan, Y. Jin, Sci. Technol. Weld. Joining 23, 164-171 (2018).
  • [14] S. Ji, Z. Li, Z. Zhou, B. Wu, J. Mater. Eng. Perform. 26, 5085-5096 (2017).
  • [15] M. Guan, Y. Wang, Y. Huang, X. Liu, X. Meng, Y. Xie, J. Li, Mater. Lett. 255, 126506 (2019).
  • [16] J. Tang, Y. Shen, J. Alloy Compd. 666, 493-500 (2016).
  • [17] C. Zhang, G. Ma, J. Nie, J. Ye, Int. J. Adv. Manuf. Technol. 78 (5-8), 1259-1264 (2015).
  • [18] B. He, L. Cui, D.P. Wang, H.J. Li, C.X. Liu, Acta Metall. Sin-Engl. 33, 135-146 (2020).
  • [19] X. Cao, M. Jahazi, Mater. Des. 32(1), 1-11 (2011).
  • [20] Y. Huang, L. Wan, X. Si, T. Huang, X. Meng, Y. Xie, Metall. Mater. Trans. A 50, 295-299 (2019).
  • [21] Q. Song, Z. Ren, S. Ji, S. Niu, W. Qi, M. Chen, Adv. Eng. Mater. 1900973 (2019).
  • [22] Y. Wei, S.M. Rajiv, Magnesium technology Springer, Cham. p205-p209 (2011).
  • [23] S. Ren, Y.F. Bai, J. Chen, S.Z. Deng, N.S. Xu, Q.B. Wu, Mater. Lett. 61 (3), 666-670 (2007).
  • [24] L. Zhou, M.R. Yu, B.Y. Liu, Z.L. Zhang, S.W. Liu, X.G. Song, H.Y. Zhao, J. Mater. Res. Technol. 9 (1), 212-221 (2020).
  • [25] S. Ji, X. Meng, Z. Liu, R. Huang, Z. Li, Mater. Lett. 201, 173-176 (2017).
  • [26] G. Song, L. Liu, P. Wang, Mat. Sci. Eng. A 429 (1-2), 312-319 (2006).
  • [27] N. Mahathaninwong, T. Plookphol, J. Wannasin, S. Visutmethangoon, Mat. Sci. Eng. A 532, 91-99 (2012).
  • [28] Y.K. Yang, H. Dong, S. Kou, Weld. J. 87 (8), 202s-211s (2008).
  • [29] L.H. Shah, N.H. Othman, A. Gerlich, Sci. Technol. Weld. Joining. 23 (3), 256-270 (2018).
  • [30] B. Chen, Y. Wang, C. Xiao, M. Zhang, G. Ni, D. Li, Mater. Sci. Tech-Lond. 34 (6), 703-711 (2018).
  • [31] L. Ma, S.Y. Niu, S.D. Ji, P. Gong, Arch. Metall. Mater. 65 (1), 307-314 (2020).
  • [32] X. Gu, C. Sui, J. Liu, D. Li, Z. Meng, K. Zhu, Mater. Des. 181, 108103 (2019).
Uwagi
1. This work is supported by the National Natural Science Foundation of China (No.51874201).
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56f9c128-958d-4d42-9855-8ac7581ab229
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.